Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 24040014-5    https://doi.org/10.11896/cldb.24040014
  无机非金属及其复合材料 |
放电等离子烧结Ce、Yb共掺钇铝石榴石稀土荧光粉及其在光伏电池中的应用
周卫新, 娄朝刚*
东南大学电子科学与工程学院,南京 210096
Spark Plasma Sintering of Ce, Yb Co-doped YAG Rare-earth Phosphors and Its Application in Photovoltaic Cell
ZHOU Weixin, LOU Chaogang*
School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
下载:  全 文 ( PDF ) ( 2853KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过多场耦合实现快速低温烧结的放电等离子技术具有快速、节能和环保等显著优势,在诸多工业领域中得到广泛应用。利用该技术合成Ce3+、Yb3+共掺钇铝石榴石稀土荧光粉,通过物相结构、形态和光谱特性对稀土荧光粉进行综合分析。结果表明,放电等离子烧结工艺有利于Ce3+和Yb3+嵌入钇铝石榴石的晶格中,晶格常数为1.200 5 nm。经研磨后的稀土荧光粉颗粒粒径为1~2 μm,YAG:Ce3+,Yb3+稀土荧光粉的发射光谱峰值为552 nm和720 nm。具有光转换功能的光伏电池的测试结果表明,光伏电池相对外量子响应在500~1 000 nm波长范围内有明显改善,同时短路电流密度高达35.95 mA/cm2,增益达0.51 mA/cm2,光电转换效率相对提高1.91%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周卫新
娄朝刚
关键词:  放电等离子烧结  稀土荧光粉  YAG:Ce3+,Yb3+    
Abstract: The utilization of spark plasma technology, known for its rapid low-temperature sintering through multi-field coupling, is prevalent across various industrial sectors due to its benefits of high efficiency, energy conservation, and eco-friendliness. In this work, Ce3+ and Yb3+ co-doped yttrium aluminum garnet rare-earth phosphors were synthesized using spark plasma sintering. The structure and morphology of the rare-earth phosphors were analyzed through X-ray diffraction and scanning electron microscopy. Additionally, their spectral characteristics were examined. The findings demonstrate that spark plasma sintering effectively enables the incorporation of Ce3+ and Yb3+ ions into the yttrium aluminum garnet lattice, resulting in a lattice constant of 1.200 5 nm. The particle size of the rare-earth phosphors post-grinding ranged from 1 μm to 2 μm. The emission spectra peaks of YAG:Ce3+, Yb3+ rare-earth phosphors were identified at 552 nm and 720 nm. Evaluation of photovoltaic cell with photo-conversion capabilities revealed a notable enhancement in relative external quantum efficiency within the 500—1 000 nm range. Furthermore, the short-circuit current density reached 35.95 mA/cm2, representing a 0.51 mA/cm2 improvement, and an increase in photovoltaic conversion efficiency of 1.91% was observed.
Key words:  spark plasma sintering    rare-earth phosphors    YAG:Ce3+    Yb3+
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TM914.4  
基金资助: 江苏省重点研发计划(BE2016175)
通讯作者:  *娄朝刚,东南大学电子科学与工程学院教授、博士研究生导师。2002年于英国Aberdeen大学获得博士学位,主要从事新型太阳能电池及纳米光学薄膜的研究。共发表50余篇论文,同时拥有近20项专利成果。lcg@seu.edu.cn   
作者简介:  周卫新,2006年12月于武汉理工大学获得材料学硕士学位。现为东南大学电子科学与工程学院工程博士研究生,在娄朝刚教授的指导下进行研究。目前主要研究领域为太阳能电池光谱转换材料。
引用本文:    
周卫新, 娄朝刚. 放电等离子烧结Ce、Yb共掺钇铝石榴石稀土荧光粉及其在光伏电池中的应用[J]. 材料导报, 2024, 38(22): 24040014-5.
ZHOU Weixin, LOU Chaogang. Spark Plasma Sintering of Ce, Yb Co-doped YAG Rare-earth Phosphors and Its Application in Photovoltaic Cell. Materials Reports, 2024, 38(22): 24040014-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24040014  或          http://www.mater-rep.com/CN/Y2024/V38/I22/24040014
1 Lin H, Yang M, Ru X N, et al. Nature Energy, 2023, 8, 789.
2 Shockley W, Queisser H. Journal of Applied Physics, 1961, 32, 510.
3 Trupke T, Green M A, Würfel P. Journal of Applied Physics, 2002, 92(3), 1668.
4 Sun L L, Ma H Z, Wang L W, et al. Journal of Luminescence, 2022, 246, 118853.
5 Vishwakarma P K, Rai S B, Bahadur A. Optical Materials, 2023, 139, 113814.
6 Chovanec J, Svoboda R, Kraxner J, et al. Journal of Alloys and Compounds, 2017, 725, 792.
7 Nitta M, Nagao N, Nomura Y, et al. ACS Applied Materials Interfaces, 2020, 12, 31652.
8 Mor O E, Ohana T, Borne A, et al. ACS Photonics, 2022, 9, 2676.
9 Yu Z M, Yang Y, Sun J M. Nanomaterials, 2023, 13, 1013.
10 Shao G J, Lou C G, Xiao D. Journal of Luminescence, 2015, 157, 344.
11 Santhosh K K, Lou C G, Arumugam G M, et al. Solar Energy, 2019, 188, 45.
12 Kateina R, Jan H, Vít J, et al. CrystEngComm, 2019, 21, 5115.
13 Jung J Y. Materials, 2022, 15(6), 2078.
14 Lau K S, Hassan Z, Lim W F, et al. Optik, 2020, 212, 164437.
15 Li Y, Cai Y X, Ming C G, et al. Bulletin of Materials Science, 2023, 46(2), 113.
16 Rai E, Yadav R S, Kumar D, et al. RSC Advances, 2023, 13(7), 4182.
17 Hu L X, Wang A Y, Wang W M. Journal of Wuhan University of Technology:Materials Science Edition, 2022, 37(3), 342.
18 Yao H, Xu X J, Cai C B, et al. Journal of Wuhan University of Technology:Materials Science Edition, 2023, 38(1), 199.
19 Razzaq S, Asghar A, Lou C G. Frontiers in Materials, 2021, 8, 697185.
20 Liu X F, Teng Y, Zhuang Y X, et al. Optics Letters, 2009, 34(22), 3565.
21 Li W J. Preparation and properties of down-conversion materials for solar cells. Master's Thesis, Southeast University, China, 2013 (in Chinese).
李文俊. 太阳能电池用光谱转换材料的研究. 硕士学位论文, 东南大学, 2013.
22 Zhang D, Deligiannis D, Papakonstantinou G, et al. IEEE Journal of Photovoltaics, 2014, 4(6), 1326.
23 Holman Z C. Descoeudres A, Barraud L, et al. IEEE Journal of Photovoltaics, 2012, 2(1), 7.
24 Tanaka M, Taguchi M, Matsuyama T, et al. Japanese Journal of Applied Physics, 1992, 31(11), 3518.
25 Fujiwara H, Kondo M. Journal of Applied Physics, 2007, 101(5), 054516.
26 Jensen N, Hausner R M, Bergmann R B, et al. Progress in Photovoltaics:Research and Applications, 2002, 10(1), 1.
[1] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[2] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[3] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[4] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[5] 胡聪, 应国兵, 刘璐, 孙铖, 文栋, 张建峰, 张晨, 王香, 王乘. 放电等离子烧结制备高纯Ta2AlC陶瓷及其高温氧化行为[J]. 材料导报, 2021, 35(12): 12044-12048.
[6] 蒋晔, 颜建辉, 李茂键. 不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能[J]. 材料导报, 2020, 34(18): 18025-18029.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed