Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12044-12048    https://doi.org/10.11896/cldb.21010065
  无机非金属及其复合材料 |
放电等离子烧结制备高纯Ta2AlC陶瓷及其高温氧化行为
胡聪1, 应国兵1, 刘璐1, 孙铖1, 文栋2, 张建峰1, 张晨1, 王香2, 王乘1
1 河海大学力学与材料学院,南京 211100
2 哈尔滨工程大学超轻材料与表面技术教育部重点实验室,哈尔滨 150001
Preparation and High-temperature Oxidation Behavior of High Purity Ta2AlC Ceramics Prepared by Spark Plasma Sintering
HU Cong1, YING Guobing1, LIU Lu1, SUN Cheng1, WEN Dong2, ZHANG Jianfeng1, ZHANG Chen1, WANG Xiang2, WANG Cheng1
1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2 Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 4794KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Ta粉、Al粉和炭黑粉为原料,利用自蔓延高温合成、无压烧结和放电等离子烧结组合工艺,成功制备了高纯Ta2AlC块体陶瓷,研究了放电等离子烧结制备的Ta2AlC块体的微观形貌与性能。制备的Ta2AlC块体的硬度、弯曲强度和断裂韧性分别为5.6 GPa、510 MPa和6.16 MPa·m1/2。放电等离子烧结工艺升温速率快、烧结时间短、制备的陶瓷晶粒细小,细晶强化效果明显,使得块体陶瓷有明显的高硬度和强度。Ta2AlC陶瓷在700~900 ℃空气中恒温氧化时,表现出线性氧化动力学特征,氧化层的主要成分从700 ℃的Ta2O5逐渐转变成800~900 ℃时的Ta2O5和AlTaO4
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡聪
应国兵
刘璐
孙铖
文栋
张建峰
张晨
王香
王乘
关键词:  Ta2AlC  放电等离子烧结  力学性能  氧化行为    
Abstract: High purity and bulk Ta2AlC ceramics had been synthesized by self-propagating high-temperature synthesis, pressure-less sintering and spark plasma sintering, using Ta, Al and carbon black powders as raw materials. Microstructures and properties of the as-fabricated Ta2AlC ceramics were investigated. The Vickers hardness, flexural strength and fracture toughness of the as-fabricated bulk Ta2AlC ceramics are 5.6 GPa, 510 MPa and 6.16 MPa·m1/2, respectively. The fast heating rate, short sintering time and fine grain formation in the spark plasma sintering resulted in a fine-grain strengthening effect which led to the high hardness and strength. The Ta2AlC ceramics oxidized at the temperature range of 700—900 ℃ showed a linear oxidation kinetics trend. When the Ta2AlC ceramic was oxidized at 700 ℃ for 15 h, the oxidation layer of the Ta2AlC was mainly composed of Ta2O5. And the oxidation products would become Ta2O5 and AlTaO4 while the oxidation temperature was risen up to 800—900 ℃.
Key words:  Ta2AlC    spark plasma sintering    mechanical property    oxidation behavior
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TB321  
基金资助: 国家自然科学基金(11872171);中央高校基本业务费(B200202117)
通讯作者:  yinggb2010@126.com; yinggb001@hhu.edu.cn   
作者简介:  胡聪,河海大学硕士研究生,主要从事纳米层状MAX和二维纳米材料MXene的研究。
应国兵,河海大学教授、博士研究生导师,材料物理与化学研究所副所长。2011年毕业于哈尔滨工业大学,获工学博士学位。2016—2018年,在美国德雷塞尔大学作访问学者、兼职教授。担任中国机械工程学会表面沉积技术委员会委员、中国硅酸盐学会特陶分会理事、江苏省复合材料学会陶瓷基复合材料委员会委员等。其团队主要研究方向包括:Si3N4、Al2O3、MAX、MXene等功能结构陶瓷及陶瓷基复合材料、金属基复合材料、超常环境材料和结构的力学行为。主持国家自然科学基金面上项目等十余项项目,在国内外学术期刊上发表论文60余篇,授权专利17项,获省部级自然科学一等奖1项、高校科学技术一等奖1项、中航工业“腾龙”奖优秀奖1项。
引用本文:    
胡聪, 应国兵, 刘璐, 孙铖, 文栋, 张建峰, 张晨, 王香, 王乘. 放电等离子烧结制备高纯Ta2AlC陶瓷及其高温氧化行为[J]. 材料导报, 2021, 35(12): 12044-12048.
HU Cong, YING Guobing, LIU Lu, SUN Cheng, WEN Dong, ZHANG Jianfeng, ZHANG Chen, WANG Xiang, WANG Cheng. Preparation and High-temperature Oxidation Behavior of High Purity Ta2AlC Ceramics Prepared by Spark Plasma Sintering. Materials Reports, 2021, 35(12): 12044-12048.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010065  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12044
1 Sokol M, Natu V, Kota S, et al.Trends in Chemistry, 2019, 1(2), 210.
2 Barsoum M W, Radovic M. Annual Review of Materials Research, 2011, 41, 195.
3 Barsoum M W, El-Raghy T. American Scientist, 2001, 89, 334.
4 Sokol M, Kalabukhov S, Zaretsky E, et al. Physical Review Materials, 2019, 3(6), 1.
5 Sun Z M. International Materials Reviews, 2011, 56(3), 143.
6 Zhu Y Y, Zhou A G, Zan Q F, et al. Materials Reports A: Review Papers, 2014, 28(9), 101 (in Chinese)
朱元元, 周爱国, 昝青峰, 等. 材料导报:综述篇, 2014, 28(9), 101.
7 Liu Y, Zhang J B, Li Y, et al. Materials Reports, 2015, 29(S2), 517 (in Chinese)
刘耀, 张建波, 李勇, 等. 材料导报, 2015, 29(专辑26), 517.
8 Xiao L, Li S, Song G, et al.Journal of the European Ceramic Society, 2011, 31(8), 1497.
9 Zheng L Y, Zhou Y C, Feng Z H. Aerospace Materials and Technology, 2013, 43(6), 1 (in Chinese).
郑丽雅, 周延春, 冯志海. 宇航材料工艺, 2013, 43(6), 1.
10 Zhao Z L, Feng X M, Ai T T. Bulletin of the Chinese Ceramic Society, 2011, 30(1), 65 (in Chinese).
赵卓玲, 冯小明, 艾桃桃. 硅酸盐通报, 2011, 30(1), 65.
11 Jeitschko W, Nowotny H, Benesovsky F. Monatshefte fur Chemie, 1963, 94(4), 672.
12 Lin Z, Zhuo M, Zhou Y, et al.Journal of the American Ceramic Society, 2006, 89(12), 3765.
13 Hu C, Zhang J, Bao Y, et al. International Journal of Materials Research, 2008, 99(1), 8.
14 Yeh C L, Shen Y G.Journal of Alloys and Compounds, 2009, 482(1-2), 219.
15 Gupta S, Filimonov D, Barsoum M W.Journal of the American Ceramic Society, 2006, 89(9), 2974.
16 Farle A M, Stikkelman J, van der Zwaag S, et al.Journal of the European Ceramic Society, 2017, 37(5), 1969.
17 Tian B N,Ying G B, Wang P J, et al. Journal of Synthetic Crystals, 2015, 44(7), 61 (in Chinese).
田宝娜, 应国兵, 王鹏举, 等. 人工晶体学报, 2015, 44(7), 61.
18 Ying G B, He X D, Li M, et al.Materials Science and Engineering: A, 2011, 528(6), 2635.
19 Griseri M, Tunca B, Lapauw T, et al. Journal of the European Ceramic Society, 2019, 39(10), 2973.
20 Ma F C,Ying G B, Su L, et al. Journal of the Chinese Ceramic Society, 2019, 47(1), 104 (in Chinese).
马凤晨, 应国兵, 宿琳, 等. 硅酸盐学报, 2019, 47(1), 104.
21 Hu C, He L, Zhang J, et al. Journal of the European Ceramic Society, 2008, 28(8), 1679.
22 Zhu W B. Researchon the synthesis and properties of Ta2AlC. Master's Thesis, Wuhan University of Technology, China, 2010 (in Chinese).
朱文彬. Ta2AlC陶瓷的制备与性能研究. 硕士学位论文, 武汉理工大学, 2010.
23 Ping W, Mei B, Hong X, et al.Transactions of Nonferrous Metals Society of China, 2007, 17(5), 1001.
24 Zheng L, Wang J, Zhou Y. Journal of the American Ceramic Society, 2014, 97(2), 552.
25 Smialek J L.Oxidation of Metals, 2015, 83(3-4), 351.
26 Wang X H, Zhou Y C. Corrosion Science, 2003, 45(5), 891.
27 Editor T. Journal of the Electrochemical Society, 2003, 150(3), 152.
28 Lin Z J, Li M S, Wang J Y, et al.Acta Materialia, 2007, 55(18), 6182.
29 Drouelle E, Gauthier-Brunet V, Cormier J, et al. Journal of Alloys and Compounds, 2020, 826, 154062.
30 Can P, Investigation on the synthesis and characteristics of novel MAX phase Nb4AlC3. Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2019 (in Chinese).
蔡平. 新型MAX相Nb4AlC3的制备及性能研究. 博士学位论文, 中国科学院大学, 2019.
[1] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[2] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[3] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[4] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[5] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[6] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[7] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[8] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[9] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[10] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[11] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[12] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[13] 赵敏, 张明涛, 彭家惠, 黄谦, 赵亮. 硫铝酸盐水泥增强建筑石膏的力学性能与耐水性能机理[J]. 材料导报, 2021, 35(12): 12099-12102.
[14] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[15] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed