Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11110-11118    https://doi.org/10.11896/cldb.20040219
  金属与金属基复合材料 |
选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述
褚夫众1, 张曦2, 黄文静2, 侯娟1, 张恺1,3,*, 黄爱军3
1 上海理工大学材料科学与工程学院,上海 200093;
2 中国商用飞机有限责任公司上海飞机设计研究院,上海 201210;
3 莫纳什大学增材制造中心,澳大利亚 克莱顿 3800
The Formation Mechanism and Effect on Mechanical Properties of Defects of Aluminum Alloy by Selective Laser Melting: a Review
CHU Fuzhong1, ZHANG Xi2, HUANG Wenjing2, HOU Juan1, ZHANG Kai1,3,*, HUANG Aijun3
1 School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Shanghai Aircraft Design and Research Institute, Shanghai 201210, China;
3 Monash Centre for Additive Manufacturing, Monash University, Clayton 3800, Australia
下载:  全 文 ( PDF ) ( 9494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选区激光熔化(Selective laser melting,SLM)作为增材制造(Additive manufacturing,AM)技术的一种,其成形精度高,有利于实现更复杂的结构设计,适合铝合金复杂零部件的快速成形,被广泛应用于航空航天领域中。铝合金由于具有密度小、比强度高及优良的综合力学性能被广泛应用于航空航天、汽车等轻量化设计领域中。但是打印缺陷的形成严重限制了SLM工艺铝合金的推广应用。因此,了解缺陷的形成机制从而控制缺陷的产生对SLM工艺铝合金的应用有着重要的意义。
SLM工艺打印缺陷主要分为裂纹,孔隙,残余应力和各向异性,球化。打印缺陷主要由不恰当的工艺参数导致。本文以Al-Si系铸造铝合金为研究对象,综述了SLM制备铝合金打印缺陷形成机制的研究进展,总结了缺陷形成的影响因素,并归纳了缺陷与铝合金力学性能之间的影响关系,孔隙率过多容易导致铝合金的拉伸和疲劳性能降低,通过选择适当的后处理可以有效改善其疲劳性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚夫众
张曦
黄文静
侯娟
张恺
黄爱军
关键词:  选区激光熔化  铝合金  缺陷  力学性能  后处理    
Abstract: As an additive manufacturing technology, selective laser melting (SLM) is capable of forming complex structures with high forming precision and is suitable for rapid prototyping of complex?structure components made of aluminum alloys. Due to their high specific strength and excellent mechanical properties, aluminum alloys are widely used in aerospace, automobile, and other industries that require lightweight materials. However, SLM aluminum alloys are prone to cracks, pores, residual stress, anisotropy, and balling. Defects are mainly caused by inappropriate process parameters and can restrict the use of SLM aluminum alloys. Therefore, insights into the formation mechanism of these defects can help control and mitigate their effects.
In this study, the common Al?Si cast aluminum alloy was used to review the current state of research on the defect formation mechanism of SLM aluminum alloys. This paper summarizes the effects of different process parameters on the defect formation and examines the relationship between defects and the mechanical properties of aluminum alloys. High porosity can reduce tensile strength and negatively affect the fatigue properties; however, fatigue resistance can be increased via an appropriate post?treatment.
Key words:  selective laser melting    aluminum alloy    defect    mechanical property    post?treatment
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TG665  
基金资助: 国家自然科学基金(52073176)
通讯作者:  *kai. zhang@usst.edu.cn   
作者简介:  褚夫众,2018年6月毕业于南昌航空大学,获得学士学位。现为上海理工大学材料科学与工程学院硕士研究生,在张恺教授和侯娟教授的指导下进行研究。目前主要研究领域为增材制造铝合金。张恺,上海理工大学特聘副教授,莫那什大学兼任博士后研究员。2011年7月本科毕业于中南大学材料科学与工程学院,并于2016年5月毕业于莫那什大学材料科学与工程学院。2015年—2019年在莫那什大学增材制造中心从事博士后研究员工作,期间主持并参与多项澳大利亚研究理事会基金项目。主要研究方向为增材制造技术开发,新型增材制造材料研究与组织结构/性能关系。近年来,在该领域发表论文20余篇,包括Materials & Design、International Journal of Fatigue、Scripta Mate-rialia和Metallurgical and Materials Transactions A等。
引用本文:    
褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
CHU Fuzhong, ZHANG Xi, HUANG Wenjing, HOU Juan, ZHANG Kai, HUANG Aijun. The Formation Mechanism and Effect on Mechanical Properties of Defects of Aluminum Alloy by Selective Laser Melting: a Review. Materials Reports, 2021, 35(11): 11110-11118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040219  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11110
1 Zheng Z, Wang L F, Yan B. Nonferrous Metal Materials and Enginee?ring,2016,37(1),57(in Chinese).
郑增,王联凤,严彪.有色金属材料与工程,2016,37(1),57.
2 DebRoy T, Wei H L, Zuback J S, et al. Progress in Materials Science,2018,92,112.
3 Qiu C L, Ravi G A, Dance C, et al. Journal of Alloys and Compounds,2015,629,351.
4 Zhang J H, Yang Y, Cao S, et al. Acta Metallurgica Sinica (English Letters),2020,33(10),1311.
5 Milton S, Duchosal A, Chalon F, et al. Journal of Manufacturing Processes,2019,38,256.
6 Cao S, Zhang B H, Yang Y, et al. Journal of Alloys and Compounds,2020,813,152247.
7 Suryawanshi J, Prashanth K G, Scudino S, et al. Acta Materialia,2016,115,285.
8 Thijs L, Verhaeghe F, Craeghs T, et al. Acta Materialia,2010,58,3303.
9 Zhang K, Tian X, Bermingham M, et al. Materials and Design,2019,184,108191.
10 Zhang H M, Gu D D, Ma C L, et al. Materials Science and Engineering A,2019,765,138294.
11 Li R D, Shi Y S, Wang Z G, et al. Applied Surface Science,2010,256,4350.
12 Hou J, Chen W, Chen Z E, et al. Journal of Materials Science and Technology,2020,48,63.
13 Bartkowiak K, Ullrich S, Frick T, et al. Physics Procedia,2011,12,393.
14 Shi Y J, Yang K, Kairy S K, et al. Materials Science and Engineering A,2018,732,41.
15 Yang K V, Shi Y J, Palm F,et al. Scripta Materialia,2018,145,113.
16 Heinz A, Haszler A, Keidel C,et al. Materials Science and Engineering A,2000,280,102.
17 Gu D D, Hagedorn Y C, Meiners W,et al. Acta Materialia,2012,60,3849.
18 Li X P, Ji G, Chen Z,et al. Acta Materialia,2017,129,183.
19 Li X P, Wang X J, Saunders M,et al. Acta Materialia,2015,95,74.
20 Rao H, Giet S, Yang K,et al. Materials and Design,2016,109,334.
21 Rao J H, Zhang Y, Huang A J,et al. International Journal of Fatigue,2019,129,105215.
22 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Additive Manufacturing,2014,1,77.
23 Kempen K, Thijs L, Yasa E,et al. In: Proceedings of Annual International Solid Freeform Fabrication Symposium. Texas, USA,2011,pp.495.
24 Weingarten C, Buchbinder D, Pirch N,et al. Journal of Materials Processing Technology,2015,221,112.
25 Galy C, Le Guen E, Lacoste E,et al. Additive Manufacturing,2018,22,165.
26 Olakanmi E O.Journal of Materials Processing Technology,2013,213,1387.
27 Zhang H, Zhu H H, Qi T, et al. Materials Science and Engineering A,2016,656,47.
28 Yan Q, Song B, Shi Y S. Journal of Materials Science and Technology,2020,41,199.
29 Spierings A B, Dawson K, Kern K,et al. Materials Science and Enginee?ring A,2017,701,264.
30 Louvis E, Fox P, Sutcliffe C J.Journal of Materials Processing Technology,2011,211,275.
31 Montero Sistiaga M L, Mertens R, Vrancken B,et al. Journal of Materials Processing Technology,2016,238,437.
32 Sing S L, An J, Yeong W Y,et al. Journal of Orthopaedic Research,2016,34,369.
33 Cao X, Wallace W, Immarigeon J P,et al. Materials and Manufacturing Processes,2003,18,23.
34 Martin J H, Yahata B D, Hundley J M, et al. Nature,2017,549,365.
35 Kaufmann N, Imran M, Wischeropp T M, et al. Physics Procedia,2016,83,918.
36 Liu R P, Dong Z J, Pan Y M.Transactions of Nonferrous Metals Society of China (English Edition),2006,16,110.
37 Xiao R S, Zhang X Y.Journal of Manufacturing Processes,2014,16,166.
38 Aversa A, Lorusso M, Cattano G,et al. Journal of Alloys and Compounds,2017,695,1470.
39 Sreeja Kumari S S, Pillai R M, Rajan T P D,et al. Materials Science and Engineering A,2007,460-461 561.
40 Zhang B, Li Y T, Bai Q.Chinese Journal of Mechanical Engineering (English Edition),2017,30,515.
41 Das S.Advanced Engineering Materials,2013,5,701.
42 Kempf A, Hilgenberg K.Materials Science and Engineering A,2020,776,138976.
43 Kempen K, Thijs L, Van Humbeeck J,et al. Materials Science and Technology,2015,31,917.
44 Morgan R H, Papworth A J, Sutcliffe C,et al. Journal of Materials Science,2002,37,3093.
45 Zhou X, Wang D Z, Liu X H,et al. Acta Materialia,2015,98,1.
46 Xia M J, Gu D D, Yu G Q,et al. International Journal of Machine Tools and Manufacture,2017,116,96.
47 Tang M,Chris Pistorius P.International Journal of Fatigue,2017,94,192.
48 Zhao H, Debroy T.Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,2001,32,163.
49 Simonelli M, Tuck C, Aboulkhair N T,et al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2015,46,3842.
50 Jia Q B, Gu D D.Optics and Laser Technology,2014,62,161.
51 Olakanmi E O, Cochrane R F, Dalgarno K W. Journal of Materials Processing Technology,2011,211,113.
52 Read N, Wang W, Essa K,et al. Materials and Design,2015,65,417.
53 Zhao J W, Easton M, Qian M, et al. Materials Science and Engineering A,2018,729,76.
54 Yang K V, Rometsch P, Jarvis T,et al. Materials Science and Engineering A,2018,712,166.
55 Deng D, Murakawa H.Computational Materials Science,2006,37,269.
56 Peter M, Jean-Pierre K. Rapid Prototyping Journal,2006,12,254.
57 Gu D D, Meiners W, Wissenbach K, et al. International Materials Reviews,2012,57,133.
58 Zhang J L, Song B, Wei Q S,et al. Journal of Materials Science and Technology,2019,35,270.
59 Di O Y, Li N, Xing W, et al. Intermetallics,2017,90,128.
60 Liu Y, Yang Y Q, Wang D.International Journal of Advanced Manufacturing Technology,2016,87,647.
61 Zhang S Y, Lin X, Chen J, et al.Rare Metal Materials and Engineering,2009,38(5),774(in Chinese).
张霜银,林鑫,陈静,等.稀有金属材料与工程,2009,38(5),774.
62 Yang Y Q, Lu J B, Luo Z Y, et al. Rapid Prototyping Journal,2012,18,482.
63 Kempen K, Thijs L, Van Humbeeck J,et al. Physics Procedia,2012,39,439.
64 Michael Cornelius Hermann Karg, Bhrigu Ahuja, Sebastian Wiesenma?yer, et al. Micromachines,2017,8,1.
65 Dai D H, Gu D D, Poprawe R,et al. Science Bulletin,2017,62,779.
66 Liu X H, Zhao C C, Zhou X,et al. Materials and Design,2019,168,107677.
67 Yadroitsev I, Krakhmalev P, Yadroitsava I,et al. Journal of Materials Processing Technology,2013,213,606.
68 Yadroitsev I, Gusarov A, Yadroitsava I,et al. Journal of Materials Processing Technology,2010,210,1624.
69 Liu B Q, Fang G, Lei L P, et al. Applied Mathematical Modelling,2020,79,506.
70 Kimura T, Nakamoto T.Materials and Design,2016,89,1294.
71 Aboulkhair N T, Maskery I, Tuck C,et al. Journal of Materials Processing Technology,2016,230,88.
72 Milad Hamidi Nasab, Dario Gastaldi, Nora Francesca Lecis,et al. Additive Manufacturing,2018,24,373.
73 Shi X Z, Ma S Y, Liu C M,et al. Optics and Laser Technology,2017,90,71.
74 Shiomi M, Osakada K, Nakamura K,et al. CIRP Annals-Manufacturing Technology,2004,53,195.
75 Kruth J P, Froyen L, Van Vaerenbergh J,et al. Journal of Materials Processing Technology,2004,149,616.
76 Fabbro R, Hamadou M, Coste F.Journal of Laser Applications,2004,16,16.
77 Liu Y, Yang Y Q, Mai S Z, et al. Materials and Design,2015,87,797.
78 Li R D. Research on the key basic issues in selective laser melting of metallic powder. Master's Thesis, Huazhong University of Science and Technology, China,2010(in Chinese).
李瑞迪.金属粉末选择性激光熔化成形的关键基础问题研究.硕士学位论文,华中科技大学,2010.
79 Tang M, Chris Pistorius P, Beuth J L. Additive Manufacturing,2017,14,39.
80 Thijs L, Kempen K, Kruth J P,et al. Acta Materialia,2013,61,1809.
81 Li X P, O'Donnell K M, Sercombe T B.Additive Manufacturing,2016,10,10.
82 Buchbinder D, Meiners W, Pirch N,et al. Journal of Laser Applications,2014,26,012004.
83 Yu W H, Sing S L, Chua C K,et al. Journal of Alloys and Compound,2019,792,574.
84 Baitimerov R, Lykov P, Zherebtsov D,et al. Materials,2018,11,1.
85 Wang L J, Zhang G H, Zhu L J,et al. Geoderma,2017,306,1.
86 Tradowsky U, White J, Ward R M,et al. Materials and Design,2016,105,212.
87 Chen B, Moon S K, Yao X,et al. JOM,2018,70,644.
88 Romano S, Brückner-Foit A, Brand?o A, et al. Engineering Fracture Mechanics,2018,187,165.
89 Girelli L, Tocci M, Gelfi M,et al. Materials Science and Engineering A,2019,739,317.
90 Prashanth K G, Scudino S, Klauss H J,et al. Materials Science and Engineering A,2014,590,153.
91 Beretta S, Romano S.International Journal of Fatigue,2017,94,178.
92 Wen Hao Kan, Yves Nadot, Matthew Foley, et al. Additive Manufactu?ring,2019,29,100805.
93 Wang Q G, Davidson C J, Griffiths J R,et al. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,2006,37,887.
94 Juan Guillermo Santos Macías, Chola Elangeswaran, Lv Zhao,et al. Scripta Materialia,2019,170,124.
[1] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[2] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[3] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[4] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[5] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[6] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[7] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[8] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[9] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[10] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[11] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[12] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[13] 朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
[14] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[15] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed