Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4129-4133    https://doi.org/10.11896/cldb.19090047
  金属与金属基复合材料 |
熔铸工艺对2618铝合金中难溶相尺寸与分布的影响
朱振宇1,2, 涂浩1,2, 吴长军1,2, 彭浩平1,2, 王建华1,2, 苏旭平1,2
1 常州大学材料科学与工程学院,江苏省表面科学与技术重点实验室,常州 213164
2 常州大学江苏省光伏科学与工程协同创新中心,常州 213164
Effect of Melting and Casting Process on Size and Distribution of Insoluble Phase in Aluminum Alloy 2618
ZHU Zhenyu1,2, TU Hao1,2, WU Changjun1,2, PENG Haoping1,2, WANG Jianhua1,2, SU Xuping1,2
1 Jiangsu Key Laboratory of Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2 Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
下载:  全 文 ( PDF ) ( 4423KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了细化2618铝合金中难溶相并改善其分布,采用光学显微镜、扫描电镜和X射线衍射仪等手段,研究了熔体保温时间、双液混合熔炼工艺和铸型温度对2618铝合金中难溶相尺寸与分布的影响。结果表明:适当延长保温时间,不仅可使Al9FeNi相形态由粗大针片状变为细小针片状,还可使Al9FeNi相和Al7Cu2Fe相的分布更加均匀。采用双液混合熔炼工艺可使2618铝合金中Al9FeNi相变成细小的针片状,且使Al9FeNi相和Al7Cu2Fe相非常均匀地分布于基体组织。将2618铝合金液浇注到室温金属型中进行快速凝固,可得到均匀分布的细小难溶相。随着铸型温度的升高,合金组织中的难溶相明显粗化,并出现明显的聚集现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱振宇
涂浩
吴长军
彭浩平
王建华
苏旭平
关键词:  2618铝合金  难溶相  熔炼工艺  铸型温度    
Abstract: In order to refine the undissolved phases in aluminum alloy 2618 and improve their distribution state, the effect of melt holding time and double liquid mixing process as well as mold temperature on the size and distribution of insoluble phases was investigated by means of optical microscope, scanning electron microscope and X-ray diffractometer. The results show that the proper increase of holding time not only changes the morphology of Al9FeNi from coarse needle to fine needle, but also increases the uniformity of Al9FeNi phase and Al7Cu2Fe phase. The double liquid mixing process could make the morphology of Al9FeNi phase in alloy 2618 changed into fine needle-like. Besides, Al9FeNi and Al7Cu2Fe phases are distributed very uniformly in the matrix of alloy 2618. After the melt of aluminum alloy 2618 is poured into metal mold at room temperature, the fine and uniform distribution of insoluble phases in alloy 2618 could be obtained due to rapid solidification. As the increase of the mold temperature, the size of the insoluble phases in the alloy increases and the aggregation occurs.
Key words:  aluminum alloy 2618    insoluble phase    melting process    mold temperature
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TG292  
基金资助: 国家自然科学基金(51074030)
通讯作者:  wangjh@cczu.edu.cn   
作者简介:  朱振宇,常州大学材料科学与工程学院硕士研究生。主要研究方向为高性能有色金属材料。
王建华,常州大学材料科学与工程学院教授、博士生导师。2003年毕业于中南大学材料科学与工程学院,获博士学位。主要研究领域为合金热力学及材料设计和高性能有色金属材料。
引用本文:    
朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
ZHU Zhenyu, TU Hao, WU Changjun, PENG Haoping, WANG Jianhua, SU Xuping. Effect of Melting and Casting Process on Size and Distribution of Insoluble Phase in Aluminum Alloy 2618. Materials Reports, 2021, 35(4): 4129-4133.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090047  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4129
1 Wang J H. Study on Microstructure and mechanical properties of heat-resistant aluminum alloy 2618. Ph.D. Thesis,Central South University, China, 2003 (in Chinese).
王建华. 2618耐热铝合金的组织与力学性能的研究.博士学位论文,中南大学, 2003.
2 Rockenhäuser C, Schriever S, Hartrott P V, et al. Materials Science and Engineering: A, 2018, 716, 78.
3 Wang J H, Yi D Q, Su X P, et al. Materials Characterization, 2008, 59(7), 965.
4 Du Z W, Wang G J, Han X L, et al. Journal of Materials Science, 2012, 47(6), 2541.
5 Liu T T, Su X P, Liu Y, et al. High Temperature Materials & Processes, 2014, 33(1),85.
6 zbek I. Materials Characterization, 2007, 58(3), 312.
7 Zhao Y H, Liu Y, Huang Z W, et al. Foundry, 2006, 55(5), 469 (in Chinese).
赵玉华, 刘越, 黄震威,等. 铸造, 2006, 55(5), 469.
8 Chen L C, Zhang W H, Zhang D W, et al. Heat Treatment Technology and Equipment, 2018, 229(4), 26 (in Chinese).
陈立超,张文华,张德伟, 等.热处理技术与装备, 2018, 229(4), 26.
9 Li Z H, Xiong B Q, Zhang Y A, et al. Materials Reports B:Research Papers, 2011, 25(2), 84 (in Chinese).
李志辉, 熊柏青, 张永安, 等.材料导报:研究篇, 2011, 25(2), 84.
10 Wang J H, Yi D Q, Chen K H, et al. The Chinese Journal of Nonferrous Metals, 2001(2), 206 (in Chinese).
王建华, 易丹青, 陈康华, 等. 中国有色金属学报, 2001(2), 206.
11 Wang J H, Yi D Q. Acta Metallurgica Sinica, 2002, 90(6), 525.
12 Wang J H, Yi D Q, Cao Y, et al. Materials for Mechanical Engineering, 2001, 25(12), 8 (in Chinese).
王建华, 易丹青, 曹昱, 等. 机械工程材料, 2001, 25(12), 8.
13 Wang B, Wang J H, Yi D Q, et al. Journal of Central South University, 2001, 32(1), 81 (in Chinese).
王斌, 王建华, 易丹青, 等. 中南大学学报, 2001, 32(1), 81.
14 Lou Z H, Zhen C K, Lin B, et al. Materials for Mechanical Engineering, 2014(8), 84 (in Chinese).
娄照辉, 郑成坤, 林波, 等. 机械工程材料, 2014(8), 84.
15 Zhang X Y, Zhang H, Kong X X, et al. The Chinese Journal of Nonferrous Metals, 2015(6), 1763 (in Chinese).
张晓苑, 张辉, 孔祥鑫, 等. 中国有色金属学报, 2015(6), 1763.
16 Wang J H, Yi D Q, Su X P, et al. The Chinese Journal of Nonferrous Metals, 2007(4), 591 (in Chinese).
王建华, 易丹青, 苏旭平, 等. 中国有色金属学报, 2007(4), 591.
17 Kita Y, Zytveld J B V, Morita Z, et al. Journal of Physics Condensed Matter, 1994, 6(6), 811.
18 Sun Y J. Study on heat treatment process of hypereutectic Al-Si alloy melt. Master's Thesis,University of Jinan, China, 2012 (in Chinese).
孙玉杰. 过共晶Al-Si合金熔体热处理工艺的研究. 硕士学位论文,济南大学, 2012.
[1] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[2] 焦丽娜, 刘晓梅, 熊富豪, 陈光耀, 豆志河, 鲁雄刚, 李重河. 钛废料脱氧工艺研究现状及进展[J]. 材料导报, 2020, 34(13): 13036-13043.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed