Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13036-13043    https://doi.org/10.11896/cldb.19050140
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
钛废料脱氧工艺研究现状及进展
焦丽娜1,3, 刘晓梅1, 熊富豪1, 陈光耀1, 豆志河2, 鲁雄刚1,4, 李重河1,4
1 省部共建高品质特殊钢冶金与制备国家重点实验室,上海市钢铁冶金新技术开发应用重点实验室,上海大学材料科学与工程学院,上海 200072
2 江苏科技大学冶金与材料工程学院,张家港 215600
3 东北大学多金属共生矿生态化冶金教育部重点实验室,沈阳 110819
4 上海特种铸造工程技术研究中心,上海 201605
Research Status and Development of Deoxidation Process of Titanium Waste
JIAO Lina1,3, LIU Xiaomei1, XIONG Fuhao1, CHEN Guangyao1, DOU Zhihe2, LU Xionggang1,4, LI Chonghe1,4
1 State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2 School of Metallurgy and Materials Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, China
3 Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
4 Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605, China
下载:  全 文 ( PDF ) ( 3261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金性能优异,被广泛应用于航空航天、化工、海洋工程等领域。随着钛制品的广泛应用,低纯度、多成分的废钛料大幅度增加,并且氧易溶解在钛合金中,增加了钛废料回收的难度,如何减少和回收金属钛废料成为钛工业发展中一项急需解决的重要课题。
钛及钛合金与氧有很强的亲和性,通常钛废料在加工和使用过程中氧含量很高,氧与钛形成固溶体会降低钛合金的延展性和抗疲劳性,因此氧含量较高的废料不能再用作生产钛锭的原料,降低氧含量是钛废料回收利用的首要任务。
近年来研究最为广泛的钛合金脱氧方法有熔盐电化学脱氧工艺、氢化-脱氢法(HDH法)、钛及钛合金熔炼脱氧工艺(添加脱氧剂和熔渣)等。熔盐电化学脱氧工艺中,改进的钙-卤化物熔盐脱氧法(OS法)和剑桥法(FFC法)均以钛的固体氧化物为阴极,在实验室研究中取得很好的脱氧效果,为二氧化钛直接制备金属钛提供新的研究方向,但是该工艺工业化进程中存在着氧在固体电极中扩散速度慢等问题。固体透氧膜法(SOM)绿色环保,解决了FFC法电流效率低、副反应难以控制等问题,但透氧膜的稳定性等问题阻碍了其工业化进展。而USTB工艺能将钛的成本降低到接近铝的成本, 但工业化进程仍然存在一些有待解决的问题,如大型阳极加工困难、电解过程中阴极沉积不稳定等。HDH法用于废钛材脱氧是近几年各国学者研究的热点,但其目前仍存在脱氢工艺中难以彻底去除氢、钛产品中氧含量过高等有待解决的问题。金属热还原结合钛合金熔炼工艺是回收废钛材、降低氧含量的一条有效途径,而研究合适的脱氧剂及脱氧熔渣是实现废钛材回收的关键。
本文综述了钛废料回收脱氧工艺的原理及研究发展现状,包括OS法、FFC法、SOM法及HDH法。重点介绍废钛料利用金属热还原法结合熔炼工艺进行脱氧的研究进展,包括熔渣、脱氧剂的选择等,并对熔炼脱氧工艺的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦丽娜
刘晓梅
熊富豪
陈光耀
豆志河
鲁雄刚
李重河
关键词:  钛废料  OS法  FFC法  SOM法  脱氧  熔炼工艺    
Abstract: Titanium alloy is widely used in aerospace, chemical, marine engineering and other fields due to their excellent performance. The amount of the low-purity, multi-component waste titanium materials were increased with the wide application of the titanium alloy products. However, the oxygen could easily dissolve into the titanium alloy, and it increases the difficulty for titanium scrap recycling. Thus, it’s important to reduce and recover metal titanium scrap.
Titanium and titanium alloy have high affinity with oxygen, which resulted that a lot of waste titanium alloy would generate during the alloy processing. However, the excess oxygen concentration would reduce the ductility and fatigue resistance of the titanium alloys. So, reducing the oxygen content is the primary task for recycling the titanium waste.
Recently, the most widely deoxidation methods for the titanium alloy were molten salt electrochemical deoxidation process, hydrogenation-dehydrogenation (HDH), titanium and titanium alloy smelting deoxidation process (adding deoxidizer and slag), respectively. During the electrochemical deoxidation process of molten salt, the titanium solid oxides are considered as the cathode for the OS method and the FFC method, which achieve the good deoxidation effect in the laboratory, and it provides a new research direction for the direct preparation of titanium metal from titanium dioxide. However, the slow diffusion rate of oxygen in the solid electrode was the main problem for the industrialization. The SOM method is environmentally friendly and solves the problems of low current efficiency of FFC and difficulty in controlling side reactions, and the stability of the oxygen permeable membrane has hindered the progress of its industrialization. The USTB process can reduce the cost of titanium to the cost of aluminum, but the large-scale anode processing and unstable cathode deposition during electrolysis are the main problems to be solved in the industrialization. The HDH method for the deoxidation of waste titanium alloy is the hot spot in recent years. There are still problems in the dehydrogenation process for removing the hydrogen concentration, and the high oxygen content in the titanium product was still the problem. The metal thermal reduction combined with titanium alloy smelting process is an effective way to recover waste titanium and reduce oxygen content. The study of suitable deoxidizer and deoxidizing slag is the key to realize the recovery of waste titanium.
This paper reviews the principle and research status of titanium waste recycling and deoxidation process, including OS method, FFC method, SOM method and HDH method. The research progress of deoxidation of waste titanium material by metal thermal reduction method combined with smelting process is introduced, including the selection of slag and deoxidizer, and the research on smelting deoxidation process is prospected.
Key words:  titanium scrap    OS method    FFC method    SOM method    deoxidation    smelting process
                    发布日期:  2020-06-24
ZTFLH:  TF84  
基金资助: 东北大学多金属共生矿生态化冶金教育部重点实验室开放基金;国家自然科学基金(U1760109)
通讯作者:  chli@staff.shu.edu.cn   
作者简介:  焦丽娜,2008年3月毕业于东北大学,获得工学硕士学位。2008年4月起工作于江苏科技大学,现为上海大学材料科学与工程学院博士研究生,在李重河教授的指导下进行研究。目前主要研究领域为钛及钛合金材料。
李重河,上海大学材料科学与工程学院教授、博士研究生导师,上海特种铸造工程技术研究中心主任。1984年7月本科毕业于中国人民解放军国防科技大学,1995年5月在中国科学院上海冶金研究所冶金物理化学专业取得博士学位,1995—2000年工作于中国科学院上海冶金研究所,期间获得国务院特殊津贴。2000—2004为新加坡Institute of High Performance Computing of Singapore高级研究工程师、访问教授,2004年6月工作于上海大学,获八五“八六三”课题工作奖、上海市科技进步一等奖,先后主持八六三计划、自然科学基金和上海市科委等省部级研究项目30多项,发表科技论文200余篇,其中100多篇被SCI收录。
引用本文:    
焦丽娜, 刘晓梅, 熊富豪, 陈光耀, 豆志河, 鲁雄刚, 李重河. 钛废料脱氧工艺研究现状及进展[J]. 材料导报, 2020, 34(13): 13036-13043.
JIAO Lina, LIU Xiaomei, XIONG Fuhao, CHEN Guangyao, DOU Zhihe, LU Xionggang, LI Chonghe. Research Status and Development of Deoxidation Process of Titanium Waste. Materials Reports, 2020, 34(13): 13036-13043.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050140  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13036
1 Mertol G, Dilara C, Onur T, et al. Metals,2018,8,336.
2 Pan L,Wang C M,Chen Y G, et al. Advanced Materials Research, 2014,1061,492.
3 Brain I, Sauert F. Thermochemical data of pure substance, Science Press, China,2003.
4 Patankar S N, Yeo T K, Tan M J. Journal of Materials Processing Technology, 2001,112,24.
5 Oh J M, Hong C I, Lim J W. Advanced Powder Technology, 2019,30,1.
6 Okabe T H, Zheng C E, Taninouchi Y K. In: The Minerals, Metals & Materials Society and ASM International 2018,2018, pp.1056.
7 Taninouchi Y, Hamanaka Y, Okabe T H. Metallurgical and Materials Transactions B, 2016, 47B,3394.
8 Zhao J Q, Nan H, Huang D. Special-cast and Non-ferrous Alloys, 2007,27(8),593(in Chinese).
赵嘉琪,南海,黄东.特种铸造及有色合金, 2007, 27(8),593.
9 Yu L, Li Y M, Deng Z Y. Light Metals, 2003(9),43(in Chinese).
喻岚,李益民,邓忠勇.轻金属,2003(9),43.
10 Li X J, Wang G, Li C G, et al. In: Proceedings of the 2014 Annual Meeting of the Titanium, Zirconium and Zinc Branch of China Nonferrous Metals Industry Association. Dalian,2014,pp.72(in Chinese).
李献军,王镐,李成钢,等. 中国有色金属工业协会钛锆铪分会. 大连,2014,pp.72.
11 Okabe T H, Oishi T. Metallurgical and Materials Transactions B,1992, 23B(10),583.
12 Fu R, Selph S, McDonagh M, Peterson K, et al. Annals of Internal Me-dicine, 2013,158,890.
13 Zheng H Y, Lu J W, Tian Q, et al. The Chinese Journal of Process Engineering, 2010(10),53(in Chinese).
郑海燕,卢金文,田青,等.过程工程学报, 2010(10),53.
14 Baoji Nonferrous Metal Processing Factory. Rare Metal Materials and Engineering, 1977(4), 31(in Chinese).
宝鸡有色金属加工厂.稀有金属材料与工程, 1977(4), 31.
15 Sheng Y Y. Shanghai Steel and Iron Research, 1986(3), 36(in Chinese).
盛永渔.上海钢研, 1986(3), 36.
16 Kuang J P, Harding R A, Campbell J. Materials Science and Technology, 2000, 16, 1007.
17 Zhang Y, Fang Z Z, Xia Y, et al. Chemical Engineering Journal, 2017, 308, 299.
18 Yahata T, Ikeda T,Maeda M. Metallurgical Transactions B, 1992,24B,599.
19 Stoephasius J, Reitz J, Friedrich B. Advanced Engineering Materials,2007,4,246.
20 Waseda Y, Isshiki E M. Purification Process and Characterization of Ultra High Purity Metals, Germany, 2001.
21 Okabe T H, Nakamura M, Oishi T, et al. Metallurgical and Materials Transactions B, 1993,24(3), 449.
22 Suzuki R O, Inoue S. Metallurgical and Materials Transactions B,2003, 34,277.
23 Okabe T H, Waseda Y. Journal of Metals,1997,49(6),28.
24 Okabe T H, Sadoway D R. Journal of Materials Research,1998,13,3372.
25 Okabe T H, Deura T N, Oishi T, et al. Metallurgical and Materials Transactions B, 1996, 237,841.
26 Okabe T H, Hirota K, Waseda Y, et al. Shigen-to-Sozai, 1998,114(11),813.
27 Hirota K, Okabe T H, Saito F, et al. Journal of Alloys and Compounds, 1999, 282,101.
28 Chen G Z, Fray D J, Farthing T W. Nature,2000,407,361.
29 Fray D J, Farthing T W, Chen G Z. U K patent, UK99/01781,1998.
30 Deng L Q. Preparation of niobium and Nb-Ti alloy by electro-deoxidation in a eutectic melt. Ph.D. Thesis, Northeastern University, China,2006(in Chinese).
邓丽琴.熔盐电脱氧法制备金属Nb及Nb-Ti合金.博士学位论文,东北大学,2006.
31 Xu Q, Deng L Q. Journal of Alloys and Compounds,2005,396,288.
32 Abdelkader A M, Kilby K T, Cox A, et al. Chemical Reviews, 2013, 113(5),2863.
33 Pal U B, Woolley D E, Kenney G B. Journal of Metals, 2001, 53(10),32.
34 Chen C Y. A novel process of preparing refractory metal and alloy drectly from metal oxide. Ph.D. Thesis, Shanghai University, China,2008(in Chinese).
陈朝轶.金属氧化物直接制备难熔金属及合金的新工艺.博士学位论文,上海大学,2008.
35 Chen C Y, Lu X G, Li C H, et al. The Chinese Journal of Nonferrous Metals,2009,19(3),583(in Chinese).
陈朝轶,鲁雄刚,李重和,等.中国有色金属学报,2009,19(3),583.
36 He L,Lu X G,Chen C Y, et al. The Chinese Journal of Nonferrous Me-tals,2008,18(7),1336(in Chinese).
何理,鲁雄刚,陈朝轶,等.中国有色金属学报,2008,18(7),1336.
37 Jiao S Q, Zhu H M. Journal of Materials Research, 2006, 21(9),2172.
38 Jiao S Q, Zhu H M. Journal of Alloys and Compounds, 2007,438,243.
39 Zhu H M, Jiao S Q, Ning X H. Materials China, 2011,30(6),37(in Chinese).
朱鸿民,焦树强,宁晓辉.中国材料进展,2011,30(6),37.
40 Froes F H, Senkov O N, Qazi J. International Materials Reviews, 2004,49,227.
41 Mimura K, Komukai T, Isshiki M. Materials Science and Engineering: A, 2005,403,11.
42 Su Y Q, Wang L, Luo L S, et al. International Journal of Hydrogen Energy, 2009,34,8958.
43 Rotmann B, Lochbichler C, Friedrich B. In:Proceedings of the European Metallurgical Conference 2011 Resources Efficiency in the Non-Ferrous Metals Industry, Optimization and Improvement. Düsseldorf, 2011,pp.1.
44 Choi J C, Chang S H, Cha Y H, et al. Korean Journal of Materials Science, 2009,19,307.
45 Maeda M, Yahata T, Mitugi K, et al. Materials Transactions, 1997, 34,599.
46 Kalinyuk A N, Trigub N P, Zamkov V N, et al. Materials Science and Engineering: A,2003,346(1-2),178.
47 Nair B G, Winter N, Daniel B, et al. Materials Science and Engineering, 2016, 143,321.
48 Vutova K, Vassileva V, Koleva E, et al. Journal of Materials Processing Technology, 2010, 210, 1089.
49 Ma R B, Chen F, Guo B. Titanium Industry Progress, 2008,25(5),37(in Chinese).
马荣宝,陈峰,国斌.钛工业进展,2008,25(5),37.
50 Wang B, Liu K R, Chen J S, et al. Transactions Nonferrous Metals Society, 2012, 22,1507.
51 Li J, Lu X G, Yang S L, et al. Nonferrous Metals: Extractive Metallurgy,2017(8),25(in Chinese).
李军,鲁雄刚,杨绍利,等.有色金属:冶炼部分,2017(8),25.
52 Bartosinski M, Hassan P S, Friedrich B, et al. Materials Science and Engineering, 2016,143,1.
53 Dou Z H, Zhang T A, Zhang H B, et al. Special Casting and Nonferrous Alloys, 2011,31(5),400(in Chinese).
豆志河,张廷安,张含博,等. 特种铸造及有色合金,2011,31(5),400.
54 Cheng C, Dou Z H, Zhang T A, et al. Journal of Metals, 2017, 69(10),1818.
55 Wan H L, Xu B Q, Dai Y N, et al. Journal of Central South University, 2012,19, 2434.
56 Patankar S N, Yeo T K, Tan M J. Journal of Materials Processing Technology, 2001,112, 24.
57 Oh J M,Hong C l , Lim J W. Advanced Powder Technology, 2019,30,1.
58 Lei L M, Huang X, Wang B, et al. Journal of the Chinese Rare Earth Society, 2005, 23(suppl),148(in Chinese).
雷力明,黄旭,王宝,等.中国稀土学报,2005, 23(suppl),148.
59 Lei W G,Zhao Y Q,Han D,et al, Materials Reports A: Review Papers,2016,30(3),101(in Chinese).
雷文光,赵永庆,韩栋等. 材料导报:综述篇,2016,30(3),101.
60 Tsukihashi F, Hatta T, Tawara E. Metallurgical and Materials Transactions B,1996, 27(6), 967.
61 Reitz J, Lochbichler C, Friedrich B. Intermetallics,2011,19,762.
62 Tsukihashi F, Hatta T, Tawara E. Metallurgical and Materials Transactions B, 1996,27(6),67.
63 Moon B M, Seo J H, Lee H J, et al. Journal of Alloys and Compounds, 2017,727,931.
64 Zheng C, Ouchi T, Iizuka A, et al. Metallurgucal and Materials Transations B, 2019, 50,622.
65 Okabe T H, Hirota K, Kasai E, et al. Joural of Alloys and Compounds, 1998, 279,184.
66 Prakash P. Strategy of India, 2018,12,39.
[1] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[2] 刘林利, 侯延辉, 刘洋, 李博思, 闵梁, 钱宝舒. Al-Ti-Mg复合脱氧钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 81-86.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed