Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 81-86    https://doi.org/10.11896/j.issn.1005-023X.2017.015.012
  材料综述 |
Al-Ti-Mg复合脱氧钢研究进展*
刘林利, 侯延辉, 刘洋, 李博思, 闵梁, 钱宝舒
武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081;
Research Progress on Al-Ti-Mg Complex Deoxidized Steels
LIU Linli, HOU Yanhui, LIU Yang, LI Bosi, MIN Liang, QIAN Baoshu
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081;
下载:  全 文 ( PDF ) ( 1671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢铁冶炼过程中脱氧问题是决定钢材质量的关键环节。在对氧化物冶金可利用的脱氧产物的研究中,Ti、Mg对钢的复合脱氧形成的氧化物夹杂更加分散,具有很好的脱氧效果。针对Al-Ti-Mg复合脱氧钢,从合金的制造、夹杂物形成机理、晶粒结构、力学性能、夹杂物对铁素体形核的影响等方面的研究进展进行了综述,提出了当前Al-Ti-Mg复合脱氧技术还处于未完善阶段,仍存在许多问题亟待解决,并为未来冶金领域研究工作者进一步探索与研究提供了方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘林利
侯延辉
刘洋
李博思
闵梁
钱宝舒
关键词:  Al-Ti-Mg复合脱氧钢  夹杂物的形成机理  力学性能    
Abstract: Deoxidation in steel smelting process is the key process to determine the quality of steel. In the research of the deoxidation products which can be used in the oxide metallurgy, Ti and Mg oxide inclusions formed by the compound deoxidation of the steel are more dispersed. In this paper, alloy manufacturing, inclusion formation mechanism, crystal structure, mechanical pro-perties and the effect of inclusions on the ferrite nucleation in Al-Ti-Mg composite deoxidized steel are summarized. The problems to be solved in Al-Ti-Mg composite deoxidized steel are put forward, and the direction for researchers to further explore and research field of metallurgy are provided.
Key words:  Al-Ti-Mg killed steels    forming mechanism of deoxidizing inclusion    mechanical property
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TF111.15+2  
基金资助: *教育部博士点基金(20133719120005); 教育部留学回国人员科研启动基金
作者简介:  刘林利:男,1992年生,硕士,研究方向为Ti、Mg复合脱氧钢,核壳纳米材料 E-mail:liulinli83410928@126.com 侯延辉:通讯作者,女,1981年生,博士,副教授,硕士研究生导师,研究方向为氧化物冶金,电-磁转换材料 E-mail:houyanhui@wust.edu.cn
引用本文:    
刘林利, 侯延辉, 刘洋, 李博思, 闵梁, 钱宝舒. Al-Ti-Mg复合脱氧钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 81-86.
LIU Linli, HOU Yanhui, LIU Yang, LI Bosi, MIN Liang, QIAN Baoshu. Research Progress on Al-Ti-Mg Complex Deoxidized Steels. Materials Reports, 2017, 31(15): 81-86.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.012  或          http://www.mater-rep.com/CN/Y2017/V31/I15/81
1 Ogibayashi S. The features of oxides in Ti-deoxidized steel[C]// Proceedings of the Sixth International Iron and Steel Congress, ISIJ International. Nagoya, 1990:612.
2 Babu S S, David S A. Inclusion formation and microstructure evolution in low alloy steel welds[J]. ISIJ Int,2002, 42(12):1344.
3 Sha Q Y, Sun Z Q. Grain growth behavior of coarse-grained auste- nite in a Nb-V-Ti microalloyed steel[J]. Mater Sci Eng A,2009,523:77.
4 Furuhara T, Shinyoshi T, Miyamoto G, et al. Multiphase crystallography in the nucleation of intragranular ferrite on MnS+V(C, N) complex precipitate in austenite[J]. ISIJ Int,2003,43(12):2028.
5 Sarma D S, Karasev A V, Jonsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. Trans Iron Steel Inst Jpn,2009, 49(7):1063.
6 Ohta H, Suito H. Dispersion behavior of MgO, ZrO2, Al2O3, CaO-Al2O3 and MnO-SiO2 deoxidation particles during solidification of Fe-10wt%Ni alloy[J]. ISIJ Int,2006,46(1):22.
7 Hu C L, Song B, Xin W B, et al. Effect of Ti-Mg composite deoxidization on inclusions in low carbon steel and organization[J]. Trans Mater Heat Treat,2013,34(5):37(in Chinese).
胡春林, 宋波, 辛文彬,等. Ti-Mg复合脱氧对低碳钢中夹杂物及组织的影响[J]. 材料热处理学报,2013,34(5):37.
8 Song Y, Li G Q, Yang F. Effect of Al-Ti-Mg composite deoxidization on inclusions in steel and organization[J]. Chinese J Eng,2011,33(10):1214(in Chinese).
宋宇, 李光强, 杨飞. Al-Ti-Mg复合脱氧对钢中夹杂物及组织的影响[J]. 工程科学学报,2011, 33(10):1214.
9 Saxena S K. Refining reaction of magnesium in steel at steelmaking temperature[C]//Proceedings International Symposium on the Phy-sical Chemistry of Iron and Steel Making. Toronto, 1982: 17.
10 Wen B, Song B, Pan N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking Steelmaking,2011,38(8):577.
11 Chang C H, Jung I H, Park S C, et al. Effect of Mg on the evolution of non-metallic inclusions in Mn-Si-Ti deoxidised steel during solidification: Experiments and thermodynamic calculations[J]. Ironmaking Steelmaking, 2005,32(3):251.
12 Ono H, Nakajima K, Maruo R, et al. Formation conditions of Mg2TiO4 and MgAl2O4 in Ti-Mg-Al complex deoxidation of molten iron[J]. ISIJ Int,2009, 49(7):957.
13 Ono H, Ibuta T. Equilibrium relationships between oxide compounds in MgO-Ti2O3-Al2O3 with iron at 1873 K and variations in stable oxides with temperature[J]. ISIJ Int,2011,51(12):2012.
14 Ono H, Nakajima K, Ibuta T, et al. Equilibrium relationship between the oxide compounds in MgO-Al2O3-Ti2O3 and molten iron at 1873 K[J]. ISIJ Int,2010,50(12):1955.
15 Ono H, Nakajima K, Agawa S, et al. Formation conditions of Ti2O3, MgTi2O4, Mg2TiO4, and MgAl2O4 in Ti-Mg-Al complex deoxidation of molten iron[J]. Steel Res Int,2009,86(3):24.
16 Tae-Kyu L, Kim H J, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds[J]. ISIJ Int,2000,40(12):1260.
17 Han S K, Chang C H, Lee H G. Evolution of inclusions and resul-tant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels[J]. Scripta Mater,2005,53(11):1253.
18 Chai F, Yang C F, Su H, et al. Effect of magnesium on inclusions formation in Ti-killed steels and microstructural evolution in welding induced coarse grianed heat affected zone[J]. J Iron Steel Res Int,2009,16(1):69.
19 Song M M, Song B, Hu C L, et al. Effect of Ti-Mg composite solid on the microstructure and impact properties of heat affected zone of steel[J]. J Eng Sci, 2015,37(7):883(in Chinese).
宋明明, 宋波, 胡春林,等. Ti-Mg复合脱氧对钢热影响区组织和冲击性能的影响[J]. 工程科学学报,2015, 37(7):883.
20 Zheng W. Al-Ti-Mg(Ca) composite solid against the large deformation of pipeline steel inclusion, the influence of the organization and performance of the steel research [D].Wuhan: Wuhan University of Science and Technology,2014(in Chinese).
郑万. Al-Ti-Mg(Ca)复合脱氧对抗大变形管线钢中的夹杂物、钢的组织及性能的影响研究[D]. 武汉:武汉科技大学,2014.
21 Hou Y H, Zheng W, Wu Z H, et al. Study of Mn absorption by complex oxide inclusions in Al-Ti-Mg killed steels[J]. Acta Mater,2016,118:8.
22 Wang C, Nuhfer N T, Sridhar S. Transient behavior of inclusion chemistry, shape, and structure in Fe-Al-Ti-O melts: Effect of titanium/aluminum ratio[J]. Metall Mater Trans B,2009,40(6):1022.
23 Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe-10mass%Ni alloy[J]. ISIJ Int,2006,46(1):14.
24 Suito H, Ohta H. Characteristics of particle size distribution in early stage of deoxidation[J]. ISIJ Int,2006,46(1):33.
25 Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Mater,2003,51(6):1593.
26 Hu C L, Song B, Song G Y, et al. Effect of content of Mg on Ti-Mg composite solid inclusions in steel and organization [J]. Trans Nonferrous Met Soc China, 2013(11):3211(in Chinese).
胡春林, 宋波, 宋高阳,等. Mg含量对Ti-Mg复合脱氧钢中夹杂物与组织的影响[J]. 中国有色金属学报, 2013(11):3211.
27 Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intragranular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels[J]. ISIJ Int,1996,36(11):1406.
28 Yang F. Fe-M-Ti-Mg (M = Si, Mn, Al) alloy composite solid steel inclusion research[D]. Wuhan:Wuhan University of Science and Technology,2011 (in Chinese).
杨飞. Fe-M-Ti-Mg(M=Si,Mn,Al )合金复合脱氧钢夹杂物的研究[D]. 武汉:武汉科技大学,2011.
29 Hatano H, Nakagawa T, Sugino T, et al. Effect of Ti and B on microstruc ture of 780 MPa class high strength steel weld metal(transformations and microstructures)[J]. R D Res Develop Kobe Steel Eng Rep,2005,91(4):397.
30 Xu L Y. Magnesium deoxidizing inclusion in steel properties and large welding line energy performance study[D]. Changsha: Central South University,2014(in Chinese).
徐龙云. 镁脱氧钢中夹杂物特性及大线能量焊接性能研究[D]. 长沙:中南大学, 2014.
31 Karasev A V, Suito H. Characteristics of fine oxide particles produced by Ti/M (M=Mg and Zr) complex deoxidation in Fe-10mass%Ni alloy[J]. ISIJ Int,2008, 48(11):1507.
32 Mimura T. Control of inclusions in tire cord steel and valve spring steel[C]//Technology for Control of Nonmetallic Inclusions and Production of Clean Steels: The 182 and 183th Nishiyama Memorial Seminar, ISIJ. Tokyo,2005:127.
33 Gregg J M, Bhadeshia H K D H. Solid-state nucleation of acicular ferrite on minerals added to molten steel[J]. Acta Mater,1997,45(2):739.
34 Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3, particle in low carbon steel[J]. Acta Mater,1999,47(9):2751.
35 Stephen A C. Weld metal microstructure in carbon manganese deposits[C]//The International Conference on Quality and Reliability in Welding. Hangzhou,1984.
36 Cui Z M, Zhu L G, Zhang Q J. Numerical simulation and research trend of oxides metallurgy[J]. Mater Rev:Rev,2015,29(4):83(in Chinese).
崔志敏, 朱立光, 张庆军. 氧化物冶金中的数值模拟及研究趋势[J]. 材料导报:综述篇,2015,29(4):83.
37 Madariaga I, Gutiérrez I. Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel[J]. Acta Mater, 1999,47(3):951.
38 Ricks R A, Howell P R, Barritte G S. The nature of acicular ferrite in HSLA steel weld metals[J]. J Mater Sci,1982,17(3):732.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed