Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9049-9058    https://doi.org/10.11896/cldb.19100023
  轻质合金 |
铝合金环形零件形/性一体化制造技术
秦芳诚1,*, 齐会萍2, 李永堂2, 刘崇宇1, 亓海全1, 康跃华3
1 桂林理工大学材料科学与工程学院,桂林 541004
2 太原科技大学金属材料成形理论与技术山西省重点实验室,太原 030024
3 广东省科学院材料与加工研究所,广州 510650
Technology of Integrated Manufacturing in Forming and Modification of Aluminum Alloy Rings
QIN Fangcheng1,*, QI Huiping2, LI Yongtang2, LIU Chongyu1, QI Haiquan1, KANG Yuehua3
1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
2 Shanxi Key Laboratory of Metallic Materials Forming Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
3 Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 7351KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝合金环形零件作为关键连接、传动、回转和支承部件在重型运载火箭贮箱、风电设备的轴承套圈及齿轮环、压力容器和核反应堆的加强圈等重大装备制造领域应用非常广泛。铝合金环形零件的生产是一个高能耗的热加工过程,现有生产工艺主要有两种:(1)厚板轧制-弯卷-对半焊接成形,环件焊接部位缝组织为弱性能区,无法满足在重载、冲击、高低温和强腐蚀等极端恶劣条件下长期稳定服役时的要求;(2)圆铸锭坯-多向锻造制坯-马架扩孔或环件辗扩,工艺流程冗长,辗扩前开坯、锻造和冲孔工序设备资金投入巨大,多次加热导致能源消耗和材料浪费严重,不利于环境友好型生产。
深空探测领域铝合金环件存在几何尺度大、形状精度高、结构刚度低和服役环境苛刻等技术挑战,目前已实现Φ3 m~Φ10 m级大型铝合金环件辗扩生产。环件辗扩过程中的传热-变形-组织演变耦合行为使得环坯经历了多场、多因素作用下多道次、连续局部加载与卸载、不均匀变形和微观组织复杂演变历程。为了实现铝合金环件的辗扩成形,一是要使环件自身整体刚性和辗扩过程稳定,即“控稳”;二是要使环件直径扩大与截面充填协同进行,同步获得径-轴向尺寸、截面轮廓及几何精度,即“控形”;三是要使成形环件达到所要求的内部组织状态和各向性能,即“控性”。铝合金环形零件用环坯的制备是铝合金环件辗扩成形及其形/性一体化调控的基础,采用多向锻造变形技术可以有效细化大规格圆铸锭的粗大组织、破碎网状共晶化合物,实现组织改性,为后续辗扩过程提供优质环坯。通过开发铝合金环件双向辗扩智能建模仿真方法和基于力控的铝合金环件双向辗扩工艺路径智能仿真优化方法,解决了矩形/异形截面环件径-轴向变形区不协调、环件刚度弱及辗扩过程失稳等问题,实现了各轧辊运动的协调匹配和基于目标驱动的自动调控。利用辗扩成形后的形变强化和热处理时效析出强化改性技术,可以进一步提高环件强度和消除残余应力,使环件径向、轴向和周向均具有优良的性能。针对现有技术的不足,本文提出了环形零件短流程铸辗复合成形技术,将砂型铸造或离心铸造获得的环形铸坯加热后直接进行辗扩,在热辗扩过程中同时实现环形铸坯几何尺寸精度要求和组织与性能改善,揭示了基于织构演变的铸坯环件在热辗扩成形中的微观组织和性能控制机制,可为铝合金环件及铝基双金属层状复合环件的短流程形/性一体化制造提供理论指导。
本文基于铝合金环形零件形/性一体化制造技术的研究现状,从铝合金环形零件用环坯的制备技术、铝合金环件辗扩成形技术和铝合金环件辗扩过程中组织与性能协同调控技术研究等方面做简要评述,着重阐述铝合金矩形/异形截面环件形/性一体化控制的技术挑战,提出铝合金环件制造技术的发展趋势及研究重点,以期推动铝合金环件/铝基双金属层状复合环件短流程制造过程中形/性一体化调控理论与技术的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦芳诚
齐会萍
李永堂
刘崇宇
亓海全
康跃华
关键词:  铝合金环件  辗扩  一体化制造  铸辗复合成形  双金属环件    
Abstract: The applications of aluminum alloy rings as the critical connection, transmission, rotation and supporting components in the bearing and gear rings for wind power equipment and the heavy launch vehicle storage tank, and in the reinforcing rings for pressure vessels and nuclear reactors are increased dramatically. The production of aluminum alloy rings is a hot working process with an energy-extensive consumption. The current techniques are as follows: (i) thick-plate rolling, bend rolling, welding forming by a half. The microstructures are characterized by a weak performance in the welding positions. The rings cannot meet the requirements in long-term service under harsh conditions such as heavy loading, impact, high temperature and strong corrosion. (ii) Cast ingot blank, multi-directional forging, trestle reaming or ring rolling.Due to the cogging, forging and punching, the long process and huge investment in equipments are caused. The repeated heating results in extensive-energy consumption and material wasting, which is not conducive to the environmentally friendly production.
Aluminum alloy rings is a major strategic demand for the deep space exploration. The challenges include large geometrical dimension, high shape precision, low structural stiffness and extreme service conditions are presented. Up to now, the large aluminum alloy rings with a diameter of 3—10 m are hot rolled. The couple of deformation-heat transfer-microstructure evolution leads to the complicated development in multi-pass, continuous loading and unloading partly, non-uniform deformation and inhomogeneous microstructure with multi-fields and multi-factors. To realize the hot ring rolling of aluminum alloy, the overall stiffness and the stability of rings should be controlled firstly. Secondly, the integrated control of radial-axial dimensions, section profile and geometric accuracy need to be realized. Thirdly, the required microstructure and properties in each direction of the hot-rolled rings should be achieved. The preparation of aluminum alloy ring blank is the basis of hot rolling and its integrated control on shape and performance. The coarse microstructure in large-sized casting blank can be refined effectively and the network eutectic compound can be broken by multiple forging technology. The microstructures are modified and then the superior ring blank can be provided to hot ring rolling. The intelligent modeling and simulation of radial-axial rolling of aluminum alloy ring and radial-axial rolling driven by rolling force of aluminum alloy ring are developed. The problems in the discordance of radial-axial deformation areas, the weak stiffness of rings and the instability of hot rolling are solved. The motions of rolls are driven by the control targets. According to the strain and aging precipitation strengthening after hot-rolled, the strength is enhanced and the residual stress is eliminated. The superior mechanical properties in radial, axial and circumference directions of rings are obtained. Aiming at the disadvantages of the current techniques, the compact cast-rolling compound forming is studied in this paper. The ring blank produced by sand casting or centrifugal casting is directly hot rolled. The precision of geometrical dimension and the improvement in the microstructure and performance of ring blank are realized simultaneously. The mechanism in the control of microstructure and performance of ring blank is revealed based on textural development. The theoretical basis of integrated manufacturing in compact cast-rolling forming of aluminum alloy rings and duplex-metallic rings will be given.
In this study, the status of integrated manufacturing in shape/properties of aluminum alloy ring is presented. The preparation of aluminum alloy ring blank, the hot ring rolling of aluminum alloy and the integrated control of microstructure and performance in aluminum alloy ring are briefly summarized. The challenges in the integrated control on shape and performance of rectangular/profile section aluminum alloy rings are emphatically elaborated. The trends and research emphases of manufacturing in aluminum alloy ring are proposed. The development of theory and technology of integrated control on shape/properties in hot rolling of aluminum alloy ring/aluminum-based bimetallic laminated ring will be promoted.
Key words:  aluminum alloy rings    ring rolling    integrated manufacturing    cast-rolling compound forming    bimetallic rings
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TG331  
  TG142  
基金资助: 国家自然科学基金(51875383); 广西自然科学基金项目(2019GXNSFAA245051; 2018GXNSFBA281056); 广西科技重大专项(GKAA18242007); 广东省科学院创新驱动发展项目(2018GDASCX-0965); 桂林理工大学科研启动基金(GUTQDJJ2017140)
通讯作者:  qinfangcheng@glut.edu.cn   
作者简介:  秦芳诚,桂林理工大学讲师,硕士研究生导师。主要研究方向为:金属材料连续与精密成形技术、精确塑性成形过程组织演变与性能控制。近年来主持或参与国家自然科学基金项目、广西自然科学基金项目和企业委托项目5项。获山西省自然科学二等奖1项,发表论文30余篇,其中SCI/EI收录15篇,获发明专利10项。
齐会萍,太原科技大学教授,硕士研究生导师。近年来主要研究环形零件铸辗复合成形新工艺。主持国家自然科学基金3项、山西省科技厅项目2项,多次参加重要国际学术会议。获山西省科技进步二等奖和技术发明二等奖各1项,国家专利优秀奖1项。发表论文30余篇,参编教材一部,获国家发明专利8项。
李永堂,太原科技大学教授,博士研究生导师。毕业于清华大学并获博士学位。近年来主要研究环形零件铸辗复合成形新工艺和大口径厚壁管铸挤复合成形新工艺。1994年起享政府特殊津贴。全国锻压机械标准化技术委员会副主任委员,山西省锻压学会理事长,山西省机械工程学会副理事长;山西省锻压协会主席。获国家科技进步二等奖1项,山西省科技进步奖多项。主持国家自然科学基金8项、山西省科技厅项目多项。出版著作和教材9部,发表论文100多篇,获国家发明专利24项。
引用本文:    
秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
QIN Fangcheng, QI Huiping, LI Yongtang, LIU Chongyu, QI Haiquan, KANG Yuehua. Technology of Integrated Manufacturing in Forming and Modification of Aluminum Alloy Rings. Materials Reports, 2021, 35(9): 9049-9058.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100023  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9049
1 Hua L, Qian D S, Deng J D, et al. Forging & Stamping Technology,2018,43(7),17(in Chinese).
华林,钱东升,邓加东,等.锻压技术,2018,43(7),17.
2 Li Y T, Qi H P, Fu J H, et al. Journal of Mechanical Engineering,2014,50(2),77(in Chinese).
李永堂,齐会萍,付建华,等.机械工程学报,2014,50(2),77.
3 Hua L, Pan L B, Lan J. Journal of Materials Processing Technology,2009,209(5),2570.
4 Yang D J, Xu K H, Ding P F, et al. Aerospace Manufacturing Technology,2014,12(6),1(in Chinese).
阳代军,徐坤和,丁鹏飞,等.航天制造技术,2014,12(6),1.
5 Liu C, Luo B H, Wang C, et al. Aluminum Fabrication,2010(4),8(in Chinese).
刘成,罗兵辉,王聪,等.铝加工,2010(4),8.
6 Ma W C, Hu S C, Yang Y M, et al. Special Casting & Nonferrous Alloys,2008,28(2),112(in Chinese).
马维策,胡士成,杨运猛,等.特种铸造及有色合金,2008,28(2),112.
7 Wu C J, Yi Y P, He H L. Hot Working Technology,2017,46(19),19(in Chinese).
吴长俊,易幼平,何海林.热加工工艺,2017,46(19),19.
8 Zhang H, Lin G Y, Yang L B, et al. Materials Reports,2002,16(3),4(in Chinese).
张辉,林高用,杨立斌,等.材料导报,2002,16(3),4.
9 Liu X H, Pan L F, Yan W L. Hot Working Technology,2014,43(3),50(in Chinese).
刘晓红,潘丽飞,严伟林.热加工工艺,2014,43(3),50.
10 Chen L, Pan L F, Yan W L, et al. Hot Working Technology,2016,45(7),40(in Chinese).
陈林,潘丽飞,严伟林,等.热加工工艺,2016,45(7),40.
11 Zhang X M, Han J P, Liu S D, et al. Journal of Central South University (Science and Technology),2012(9),3386(in Chinese).
张新明,韩建鹏,刘胜胆,等.中南大学学报:自然科学版,2012(9),3386.
12 Yu W, Li B C, Huang W H. Hot Working Technology,2011,40(2),51(in Chinese).
余伟,李保成,黄文辉.热加工工艺,2011,40(2),51.
13 Huang W H. Research on the influence of deformation temperature and deformation times on microstructure and properties of 7A04 aluminum alloy. Master's Thesis, North University of China, China,2010 (in Chinese).
黄文辉.变形温度和变形次数对7A04铝合金组织与性能影响研究. 硕士学位论文,中北大学,2010.
14 Huang W H, Li B C. Hot Working Technology,2010,39(22),49(in Chinese).
黄文辉,李保成.热加工工艺,2010,39(22),49.
15 Qin F C, Qi H P, Li Y T. Journal of Materials Engineering and Perfor-mance,2019,28,3487.
16 Qin F C, Qi H P, Kang Y H, et al. Advances in Materials Science and Engineering,2019,2019,1.
17 Liu X, Wang G Q, Li S G, et al. Aerospace Manufacturing Technology,2013,2(1),1(in Chinese).
刘欣,王国庆,李曙光,等.航天制造技术,2013,2(1),1.
18 Liu H, Zhang W X, Wang H Q, et al. Aerospace Manufacturing Technology,2017,2(1),26(in Chinese).
刘浩,张文学,王恒强,等.航天制造技术,2017,2(1),26.
19 Xu K H, Zhang W X, Yang D J, et al. Forging & Stamping Technology,2016,41(10),92(in Chinese).
徐坤和,张文学,阳代军,等.锻压技术,2016,41(10),92.
20 Gu R J, Zhang S L, Yang D X, et al. Forging & Stamping Technology,2016,41(5),57(in Chinese).
谷瑞杰,张淑莲,杨大祥,等.锻压技术,2016,41(5),57.
21 Guo L G, Wang F Q, Liang L, et al. Journal of Netshape Forming Engineering,2017,9(4),1(in Chinese).
郭良刚,王凤琪,梁磊,等.精密成形工程,2017,9(4),1.
22 Luo X D, Liu H, Zhu Y X. Ordnance Material Science and Engineering,2014,37(3),38(in Chinese).
罗晓东,柳浩,朱永祥.兵器科学与工程,2014,37(3),38.
23 Wang H Q. Study on the control technology of radial-axial ring rolling of aluminum alloy rings. Master's Thesis, Harbin Institute of Technology,China,2014(in Chinese).
王恒强.铝合金环件径-轴向轧制成形控制技术研究.硕士学位论文,哈尔滨工业大学,2014.
24 Wang B, Zhou S J, Wang H Q, et al. Aerospace Manufacturing Technology,2017,8(4),35(in Chinese).
王兵,周世杰,王恒强,等.航天制造技术,2017,8(4),35.
25 Hang S, Qian D S. Forging & Stamping Technology,2016,41(9),64(in Chinese).
韩双,钱东升.锻压技术,2016,41(9),64.
26 Feng S G, Lan J, Gu Q. Forging & Stamping Technology,2017,42(6),82(in Chinese).
冯绍贵,兰箭,顾青.锻压技术,2017,42(6),82.
27 Yang D J, Zhang W X, Wang D H, et al. Physics Examination and Testing,2018,36(2),10(in Chinese).
阳代军,张文学,王道虎,等.物理测试,2018,36(2),10.
28 Yao M, Zhang W X, Fu M M, et al. Hot Working Technology,2017,46(16),227(in Chinese).
姚梦,张文学,付敏敏,等.热加工工艺,2017,46(16),227.
29 Wang H M, Yi Y Y, Huang S S. Journal of Alloys and Compounds,2016,685,941.
30 Chen Z K, Zhou W W, Fan X Z, et al. Journal of Netshape Forming Engineering,2016,8(4),16(in Chinese).
陈增奎,周卫卫,范新中,等.精密成形工程,2016,8(4),16.
31 Fang J, Yi Y P, Huang S Q, et al. Materials Reports B: Research Papers,2019,33(9),3062(in Chinese).
方杰,易幼平,黄始全,等.材料导报:研究篇,2019,33(9),3062.
32 Jiang D, Yi Y P, Huang S Q. Hot Working Technology,2017,46(20),75(in Chinese).
江道,易幼平,黄始全.热加工工艺,2017,46(20),75.
33 Wang S L. Research on aluminum alloy trapezoidal ring plastic forming. Master's Thesis,North University of China,China,2015(in Chinese).
王松林.铝合金梯形环塑性成形工艺研究.硕士学位论文,中北大学,2015.
34 Wu Q, Wu J, Zhang Y D, et al. International Journal of Mechanical Sciences,2019,157-158,111.
35 Hua L, Qian D S. Journal of Mechanical Engineering,2014,50(16),70(in Chinese).
华林,钱东升.机械工程学报,2014,50(16),70.
36 Yang H, Sun Z C, Zhan M, et al. Journal of Plasticity Engineering,2008,15(2),6(in Chinese).
杨合,孙志超,詹梅,等.塑性工程学报,2008,15(2),6.
37 李永堂,齐会萍,杜诗文,等.中国专利,ZL201010132486.6,2010.
38 李永堂,齐会萍,刘志奇,等.中国专利,ZL201010132491.7,2010.
39 Li Y T, Ju Li, Qi H P, et al. Chinese Journal of Mechanical Enginee-ring,2014,27(2),418.
40 Li Y T, Qi H P, Li Q S, et al. Journal of Mechanical Engineering,2013,49(20),49(in Chinese).
李永堂,齐会萍,李秋书,等.机械工程学报,2013,49(20),49.
41 Qi H P, Li Y T. Chinese Journal of Mechanical Engineering,2012,25(5),853.
42 Qi H P, Li Y T, Hua L, et al. Journal of Mechanical Engineering,2014,50(14),75(in Chinese).
齐会萍,李永堂,华林,等.机械工程学报,2014,50(14),75.
43 Qin F C, Li Y T, Qi H P, et al. Journal of Materials Engineering and Performance,2016,25(3),1237.
44 Qin F C, Li Y T, Qi H P, et al. Journal of Materials Engineering and Performance,2016,25(11),5040.
45 Qin F C, Li Y T, Qi H P, et al. Chinese Journal of Mechanical Enginee-ring,2017,30(1),7.
46 Qin F C, Li Y T, Ju L. High Temperature Materials and Processes,2017,36(3),209.
47 Qin F C, Li Y T, Qi H P, et al. Journal of Materials Engineering and Performance,2017,26(3),1300.
48 Guo L G, Pan X, Yang H, et al. Heavy Machinery,2012(3),59(in Chinese).
郭良刚,潘霞,杨合,等.重型机械,2012(3),59.
49 Guo J, Qian D S, Deng J D. Journal of Materials Processing Technology,2016,231,151.
50 Guo J, Qian D S. Journal of Plasticity Engineering,2013,21(2),40(in Chinese).
郭俊,钱东升.塑性工程学报,2013,21(2),40.
51 韩星会,华林,周光华,等.中国专利,ZL201310013103.7,2015.
52 秦芳诚,李永堂,齐会萍,等.中国专利,ZL201510610375.4,2017.
53 秦芳诚,李永堂,齐会萍,等.中国专利,ZL201710264730.6,2018.
[1] 秦芳诚, 齐会萍, 李永堂, 武永红, 亓海全, 刘崇宇. 环形零件短流程铸辗复合成形技术研究进展[J]. 材料导报, 2020, 34(19): 19152-19165.
[2] 黄建武, 易幼平, 黄始全, 郭万富. 深冷变形对2219铝合金环件晶粒组织及性能的影响[J]. 材料导报, 2020, 34(14): 14129-14133.
[3] 秦芳诚, 齐会萍, 李永堂, 亓海全. 离心铸造Q235B钢环件热辗扩过程中的组织演变[J]. 材料导报, 2020, 34(12): 12132-12138.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed