Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19152-19165    https://doi.org/10.11896/cldb.19080058
  金属与金属基复合材料 |
环形零件短流程铸辗复合成形技术研究进展
秦芳诚1, 齐会萍2,, 李永堂2, 武永红2, 亓海全1, 刘崇宇1
1 桂林理工大学材料科学与工程学院,桂林 541004
2 太原科技大学金属材料成形理论与技术山西省重点实验室,太原 030024
Advances in Compact Cast-Rolling Forming of Ring-shape Parts
QIN Fangcheng1, QI Huiping2, LI Yongtang2, WU Yonghong2, QI Haiquan1, LIU Chongyu1
1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
2 Shanxi Key Laboratory of Metallic Materials Forming Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 23034KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轴承套圈、法兰等环形零件作为关键连接、传动、回转和支承结构件,在航空航天、风力发电、高铁、船舶和高档数控机床等重大装备制造领域应用非常广泛。环形零件的生产是一种高能耗的热加工过程,传统生产工艺主要有两种:(1)厚板轧制—弯卷—焊接成形,该工艺下环件焊接部位应力集中明显,在高压、强腐蚀等恶劣服役条件下为弱性能区;(2)通过冶炼—浇铸—加热—锭坯开坯—下料—圆棒加热—锻造—冲孔—加热—环坯热辗扩来实现环件生产,该工艺流程冗长,开坯、锻造和冲孔工序设备资金投入巨大,多次加热导致能源消耗和材料浪费严重,不利于环境友好型生产。
环件热辗扩过程中的传热-变形-组织演变耦合行为使得环坯经历了多场、多因素作用下多道次、连续局部加载与卸载、不均匀变形和微观组织复杂演变历程,对成形环件的外形尺寸、组织和力学性能均产生显著影响。随着环件应用向着大型、轻量、重载和长寿命方面逐步发展,对其高性能、精确成形与低成本制造提出了更高要求。近年来得到重点研究并取得长足发展的环形零件短流程铸辗复合成形技术以砂型铸造或离心铸造获得的环形铸坯加热后直接进行辗扩为基础,省去了开坯、锻造和冲孔,只需要一次加热,具有工艺流程短和节能节材等突出优点(节材30%以上、节能60%以上),是风电法兰、石油化工容器和高档数控机床主轴承等重大装备高效、高性能和绿色制造的必然要求。然而,在热辗扩过程中不仅要实现环形铸坯截面轮廓达到所要求环件外形尺寸,同时其组织与性能也要得到充分改善和提高,使得对热辗扩过程中组织演变和性能控制面临诸多技术挑战。研究者们深入分析了环形铸坯材料单道次和双道次热压缩变形行为、组织演变规律及其模型构建方法,建立了关于材料常数考虑应变补偿的本构关系模型,为此研究了热-力-组织演变多场耦合及其基于晶粒拓扑变形技术和介观-微观元胞自动机跨层次耦合条件下的热辗扩数值模拟技术,构建了考虑晶粒空间重叠的CA模型,基于工业性试验从织构视角研究了其在铸坯环件热辗扩成形中微观组织和性能控制规律,获得了环件不同区域的晶粒细化极限,可以实现环件短流程铸辗复合成形生产。
本文综述了基于锻态环坯和铸态环坯的热辗扩成形技术研究进展,探讨了环形铸坯热辗扩过程中组织与性能协同调控的理论与方法,建立了环形铸坯凝固过程裂纹萌生判据与裂纹控制的工艺方法,提出了环形铸坯热辗扩成形技术的研究发展方向,阐述了双金属复合环形铸坯热辗扩成形技术的研究内容及重点,以期推动环件短流程制造全过程“形”/“性”一体化调控理论与技术发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦芳诚
齐会萍
李永堂
武永红
亓海全
刘崇宇
关键词:  环形铸坯  热辗扩  织构演变  裂纹控制  双金属环件    
Abstract: Ring-shape parts such as bearing and flange as the key connect piece, driving medium, rotating member and supporting structure are widely used in major equipment industrial including aerospace, wind power, high-speed rail, ship and high-end numerically-controlled machine. The production in rings is an energy-extensive consumption process. The current technique for ring production mainly includes two kinds: ⅰ) thick plate rolling, bending and welding. The significant stress concentration is presented in the welding areas, which leads to the weak properties in the poor service conditions with high-pressure and corrosion.ⅱ) smelting, ingot pouring, heating, casting, heating, cogging, cutting, rod heating, forging, punching, heating and hot ring rolling. The process is lengthly and the cost of equipments in cogging, forging and punching is huge. The serious energy-consumption and materials wasting in the current process go against environmentally friendly production because of repeatedly heating.
The coupling behavior of heat transfer-deformation-microstructure in hot ring rolling results in a complex development of multi-pass, continuous locality loading and unloading, uneven deformation and microstructural evolution with the function of multi-fields and factors. And the geometrical dimensions, microstructure and mechanical properties of the ring blank are significantly affected. As the application of rings develops to large-scale, light-weight, heavy-load and long-life, the demand for manufacturing in high-performance, precision and low cost are proposed. In recent years, the compact cast-rolling compound technique is studied in detail and useful results are obtained. In this process, the ring blank produced by sand casting or centrifugal casting is directly hot rolled. The cogging, forging and punching are leaved and only one heating is needed. Moreover, some advantages of short technological process and materials (above 30%) and energy-conservation (above 60%) are presented. Therefore, the compact process is the inevitable requirement of high-efficiency, high-performance and green manufacturing in the wind power flanges, the petrochemical pressure vessel and numerically-controlled machine base bearing. However, in the hot ring rolling, not only the geometrical dimension of the casting ring blank need to be obtained, but its microstructure and mechanical properties need to be improved and enhanced. A lot of technical challenges occur in the microstructure evolution and performance control of hot ring rolling. Analysis of single-and double-pass compression behavior of casting ring blank, the microstructure evolution rule and its modeling are conducted by researchers. The material constants in the constitutive models considering strain-compensation are established. Furthermore, the simulation of hot rolling with multi-fields coupling of heat transfer-deformation-microstructure, and cross-level coupling of grain topological and mesoscopic-microscopic cellular automaton (CA) are stu-died respectively in detail. The CA models considering grain space overlap is constructed. According to industrial tests, the textural development is introduced to study the control rule of microstructure and mechanical properties in hot rolling of casting ring blank. The grain refinement limitation in different areas of the hot rolled ring is obtained. The results contribute to the achievement of compact cast-rolling compound forming of rings.
The research progress on the hot rolling of as-forged ring blank and casting ring blank are summarized. The theories and methods on the integrated control of microstructure and mechanical properties of casting ring blank during the hot rolling are discussed. The crack initiation criterion and processing parameter control on the solidification of casting ring blank are established. The research trends on the hot rolling of the casting ring blank are proposed. The contents and key points in the hot rolling of duplex-metallic casting ring blank are elaborated. This study will promote the development of theory and technique on the integrated control of forming and modification in the compact cast-rolling compound manufacturing of ring parts.
Key words:  as-cast ring blank    hot ring rolling    texture evolution    crack control    duplex-metallic rings
                    发布日期:  2020-11-05
ZTFLH:  TG331  
  TG142  
基金资助: 国家自然科学基金(51875383;51575371);广西自然科学基金项目(2019GXNSFAA245051;2018GXNSFBA281056);广西科技重大专项(2018AA23004;GKAA17202007);桂林理工大学科研启动基金(GUTQDJJ2017140)
通讯作者:  qhp9974@tyust.edu.cn   
作者简介:  秦芳诚,桂林理工大学讲师,硕士研究生导师。主要研究方向为:金属材料连续与精密成形技术、精确塑性成形过程组织演变与性能控制。近年来主持或参与国家自然科学基金项目、广西自然科学基金项目和企业委托项目5项,发表论文20余篇,其中SCI/EI收录13篇,获发明专利10项。
齐会萍,太原科技大学副教授,硕士研究生导师。近年来主要研究环形零件铸辗复合成形新工艺。主持国家自然科学基金3项。山西省科技厅项目2项。多次参加重要国际学术会议。获山西省科技进步二等奖和技术发明二等奖各1项,国家专利优秀奖1项。发表论文30余篇,参编教材一部,获国家发明专利8项。
引用本文:    
秦芳诚, 齐会萍, 李永堂, 武永红, 亓海全, 刘崇宇. 环形零件短流程铸辗复合成形技术研究进展[J]. 材料导报, 2020, 34(19): 19152-19165.
QIN Fangcheng, QI Huiping, LI Yongtang, WU Yonghong, QI Haiquan, LIU Chongyu. Advances in Compact Cast-Rolling Forming of Ring-shape Parts. Materials Reports, 2020, 34(19): 19152-19165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080058  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19152
1 Hua L, Qian D S. Journal of Mechanical Engineering,2014,50(16),70(in Chinese).
华林,钱东升.机械工程学报,2014,50(16),70.
2 Yang H, Sun Z C, Zhan M, et al. Journal of Plasticity Engineering,2008,15(2),6(in Chinese).
杨合,孙志超,詹梅,等.塑性工程学报,2008,15(2),6.
3 Johnson W, Needham G. International Journal of Mechanical Sciences,1968,10(2),95.
4 Shao Y C, Hua L, Wei W T, et al. Materials Research Innovation,2013,7(1),49.
5 Shao Y C. Research on microstructure evolution law of cold ring rolling. Master's Thesis, Wuhan University of Technology, China,2010(in Chinese).
邵一川.冷轧环件微观组织演变规律研究.硕士学位论文,武汉理工大学,2010.
6 Yang D Y, Kim K H, Hawkyard J B. International Journal of Mechanical Sciences,1991,33(7),541.
7 Song J L, Dowson A L, Jacobs M H, et al. Journal of Materials Proces-sing Technology,2002,121(2-3),332.
8 Ryttberg K, Wedel M K, Recina V, et al. Materials Science and Engineering A,2010,527,2431.
9 Yeom J T, Jeoung H K, Park N K, et al. Journal of Material Processing Technology,2007,187-188,747.
10 Yada H, Senuma T. Journal of Japan Society of Technology Plasticity,1986,27,34.
11 Xu S G, Cao Q X. Journal of Material Processing Technology,1994,43,221.
12 Xu S G, Cao Q X, Lian J C. Journal of Plasticity Engineering,1994,1(2),24(in Chinese).
许思广,曹起骧,连家创.塑性工程学报,1994,1(2),24.
13 Sun Z C, Yang H, Ou X Z. Computational Materials Science,2010,49,134.
14 Zhang R. Investigation on recrystallization behavior of GCr15 bearing steel during hot ring rolling. Master's Thesis, Wuhan University of Technology, China,2014(in Chinese).
张瑞.GCr15轴承钢在热轧环过程中的再结晶行为研究.硕士学位论文,武汉理工大学,2014.
15 李永堂,齐会萍,杜诗文,等.中国专利,ZL201010132486.6.2010.
16 李永堂,齐会萍,刘志奇,等.中国专利,ZL201010132491.7.2010.
17 Li Y T, Ju Li, Qi H P, et al. Chinese Journal of Mechanical Enginee-ring,2014,27(2),418.
18 Li Y T, Qi H P, Li Q S, et al. Journal of Mechanical Engineering,2013,49(20),49(in Chinese).
李永堂,齐会萍,李秋书,等.机械工程学报,2013,49(20),49.
19 Qi H P, Li Y T. Chinese Journal of Mechanical Engineering,2012,25(5),853.
20 Qi H P, Li Y T, Hua L, et al. Journal of Mechanical Engineering,2014,50(14),75(in Chinese).
齐会萍,李永堂,华林,等.机械工程学报,2014,50(14),75.
21 Qin F C, Li Y T, Qi H P, et al.Journal of Materials Engineering and Performance,2016,25(3),1237.
22 Qin F C, Li Y T, Qi H P, et al. Journal of Materials Engineering and Performance,2016,25(11),5040.
23 Qin F C, Li Y T, Qi H P, et al. Chinese Journal of Mechanical Enginee-ring,2017,30(1),7.
24 Qin F C, Li Y T, Ju L. High Temperature Materials and Processes,2017,36(3),209.
25 Qin F C, Li Y T, Qi H P, et al. Journal of Materials Engineering and Performance,2017,26(3),1300.
26 Guo L G, Pan X, Yang H, et al. Heavy Machinery,2012(3),59(in Chinese).
郭良刚,潘霞,杨合,等.重型机械,2012(3),59.
27 Guo J, Qian D S, Deng J D.Journal of Materials Processing Technology,2016,231,151.
28 Guo Jun, Qian D S. Journal of Plasticity Engineering,2013,21(2),40(in Chinese).
郭俊,钱东升.塑性工程学报,2013,21(2),40.
29 Li Y T, Qi H P, Fu J H, et al. Journal of Mechanical Engineering,2013,49(6),198(in Chinese).
李永堂,齐会萍,付建华,等.机械工程学报,2013,49(6),198.
30 Medeiros S C, Prasad Y V R K, Frazier W G, et al. Materials Science and Engineering A,2000,293,198.
31 Na Y S, Yeom J T, Park N K, et al. Journal of Materials Processing Technology,2003,141,337.
32 Wang M T, Li X T, Du F S, et al. Materials Science and Engineering A,2004,379,133.
33 Wang M T, Li X T, Du F S, et al. Materials Science and Engineering A,2005,391,305.
34 Yin F, Hua L, Mao H J, et al. Materials and Design,2014,55,560.
35 Qin F C. Research on hot deformation and microstructure evolution of Q235B during casting-rolling compound forming for ring parts. Master's Thesis, Taiyuan University of Science and Technology, China,2014(in Chinese).
秦芳诚.环件铸辗复合成形中Q235B钢热变形及组织演变研究.硕士学位论文,太原科技大学,2014.
36 Jiang F L, Zhang H, Li L X, et al. Materials Science and Engineering A,2012,552,269.
37 Zhang H F, Shen B, Zhang H H. Shanghai Metals,2012,34(6),43(in Chinese).
张海峰,沈斌,张恒华.上海金属,2012,34(6),43.
38 Li H Z, Zeng M, Liang X P, et al. Transactions of Materials and Heat Treatment,2012,33(4),110(in Chinese).
李慧中,曾敏,梁霄鹏,等.材料热处理学报,2012,33(4),110.
39 Lin Q Q, Dong W Z, Li Y T, et al. Procedia Engineering,2014,81,1259.
40 Qian D S, Hua L, Zuo Z J. Journal of Materials Processing Technology,2007,187-188,734.
41 Guo L G, Yang H. Modeling and Simulation in Materials Science and Engineering,2005,13(7),1029.
42 Nassir A, Ali B. Journal of Materials Processing Technology,2010,210,1364.
43 Zhang F, Li Y T, Qi H P, et al. Forging Equipment and Technology,2011,2011(2),96(in Chinese).
张锋,李永堂,齐会萍,等.锻压装备与制造技术,2011,46(2),96.
44 Zhang F. Simulation of hot ring rolling based on an as-cast blank. Master's Thesis, Taiyuan University of Science and Technology, China,2011(in Chinese).
张锋.基于铸坯的环件热辗扩成形工艺数值模拟.硕士学位论文,太原科技大学,2011.
45 Han S P. Study on hot ring rolling process of as-cast Q235B flange blank. Master's Thesis, Taiyuan University of Science and Technology, China,2014(in Chinese).
韩素平.铸态Q235B钢法兰环件热辗扩成形工艺研究.硕士学位论文,太原科技大学,2014.
46 Deng C H. Study on simulation of radial-axial hot ring rolling of as-cast 25Mn blank. Master's Thesis, Taiyuan University of Science and Technology, China,2015(in Chinese).
邓潮鸿.25Mn铸环坯径轴向热辗扩成形数值模拟与工艺研究.硕士学位论文,太原科技大学,2015.
47 Ding S F. Modeling and multi-coupling simulation of cast-rolling compound forming of ring. Master's Thesis, Taiyuan University of Science and Technology, China,2014(in Chinese).
丁双凤.环件铸辗复合成形多场耦合作用下建模与仿真.硕士学位论文,太原科技大学,2014.
48 Li Y T, Di S F, Fu J H, et al. Transactions of Materials and Heat Treatment,2017,38(1),171(in Chinese).
李永堂,丁双凤,付建华,等.材料热处理学报,2017,38(1),171.
49 Cai Z X. Numerical study on hot ring rolling process of as-cast Q235B blank. Master's Thesis, Taiyuan University of Science and Technology, China,2015(in Chinese).
蔡中祥.基于铸态Q235B环件热辗扩成形工艺数值模拟研究.硕士学位论文,太原科技大学,2015.
50 Guo Y N, Li Y T, Guo Z, et al. Journal of Mechanical Engineering,2014,50(12),30(in Chinese).
郭一娜,李永堂,郭喆,等.机械工程学报,2014,50(12),30.
51 Guo Y N, Ding S F, Li Y T, et al. Journal of Mechanical Engineering,2014,50(14),81(in Chinese).
郭一娜,丁双凤,李永堂,等.机械工程学报,2014,50(14),81.
52 Li H W, Feng L, Yang H. Transactions of Nonferrous Metals Society of China,2013,23,3729.
53 Pi C H, Han J T, Xue Y D, et al. Chinese Journal of Mechanical Engineering,2006,42(3),15(in Chinese).
皮春华,韩静涛,薛永栋,等.机械工程学报,2006,42(3),15.
54 Asaro R J, Needleman A. Acta Metallurgica,1985,33,923.
55 Kalidindi S R, Anand L. International Journal of Mechanical Sciences,1992,34(4),309.
56 Lehmann E, Fabmann D, Loehnert S, et al. International Journal of Engineering Science,2013,68,24.
57 Bate P S, J. Fonseca Q. Materials Science and Engineering A,2004,380,365.
58 Lee S H, Lee D N. International Journal of Mechanical Sciences,2001,43,1997.
59 Li H W, Yangh, Sun Z C. International Journal of Plasticity,2008,24,267.
60 Qin F C Du S W, Li Y T, et al. Hot Working Technology,2013,42(18),76(in Chinese).
秦芳诚,杜诗文,李永堂,等.热加工工艺,2013,42(18),76.
61 Qin F C, Li Y T, Qi H P, et al. Journal of Mechanical Engineering,2015,36(7),96(in Chinese).
秦芳诚,李永堂,齐会萍,等.机械工程学报,2014,50(14),95.
62 Wang H Q. Study of control on radial-axial ring rolling for aluminium alloy. Master's Thesis, Harbin Institute of Technology, China,2014(in Chinese).
王恒强.铝合金环件径-轴向轧制成形控制技术研究.硕士学位论文,哈尔滨工业大学,2014.
63 Qin F C, Li Y T. Journal of Mechanical Engineering,2016,52(8),112(in Chinese).
秦芳诚,李永堂.机械工程学报,2016,52(8),112.
64 Qin F C, Qi H P, Li Y T, et al. Journal of Mechanical Engineering,2017,53(2),27(in Chinese).
秦芳诚,齐会萍,李永堂,等.机械工程学报,2017,53(2),27.
65 韩星会,华林,周光华,等.中国专利,ZL201310013103.7,2015.
66 秦芳诚,李永堂,齐会萍.中国专利,ZL201510610375.4,2017.
67 秦芳诚,李永堂,齐会萍.中国专利,ZL201710264730.6,2018.
68 Wang D L, Wu J H, Cai B, et al. Special Casting & Nonferrous Alloys,2018,38(3),288(in Chinese).
王冬林,吴金辉,蔡彬,等.特种铸造及有色合金,2018,38(3),288.
69 Ye F M, Jing X R, Guo M H, et al. Steel Pipe,2014,43(1),72(in Chinese).
叶富明,景旭冉,郭明海,等.钢管,2014,43(1),72.
70 Nazari J, Yousefi M, Kerahroodi M S A, et al. International Journal of Materials Lifetime,2015,1(1),20.
71 Zhou L, He J A, Xin Q B, et al. Journal of Northeastern University (Natural Science),2004,25(5),424(in Chinese).
周利,何奖爱,辛启斌,等.东北大学学报,2004,25(5),424.
72 Yao Sanjiu. Special Casting & Nonferrous Alloys,2002(2),44(in Chinese).
姚三九.特种铸造及有色合金,2002(2),44.
73 Xu J Z, Gao X J, Jiang Z Y, et al. The International Journal of Advanced Manufacturing Technology,2016,86,817.
74 Gao X J, Jiang Z Y, Wei D B, et al. Materials Science & Engineering A,2014,595,1.
75 Lee D J, Ahn D H, Yoon E Y, et al. Scripta Materialia,2013,68,893.
76 Wang T M, Cao F, Zhou P. Journal of Alloys and Compounds,2014,616,550.
77 Dhib Z, Guermazi N, Gaspérini M, et al. Materials Science & Enginee-ring A,2016,656,130.
78 Chen Y S, Du S L, Ning D Y, et al. Research on Iron & Steel,2016,44(2),21(in Chinese).
陈育生,杜顺林,宁德宇,等.钢铁研究,2016,44(2),21.
79 Du J J, Zhang X, Liu B X, et al. Materials Chemistry and Physics,2019,223,114.
80 Zhang B Y, Liu B X, He J N, et al. Materials Science & Engineering A,2019,740-741,92.
81 Wang C Y, Jiang Y B, Xie J X, et al. Materials Science & Engineering A,2017,708,50.
82 Tong J G, Gao X D, Qu H T, et al. Journal of University of Science and Technology Beijing,2009,31(4),451(in Chinese).
佟建国,高晓丹,曲海涛,等.北京科技大学学报,2009,31(4),451.
83 Vigraman T, Narayanasamy R, Ravindran D. Materials & Design,2012,35,156.
84 Zhang C, Li H, Li M Q. Journal of Materials Science & Technology,2016,32,259.
[1] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[2] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed