Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5027-5031    https://doi.org/10.11896/cldb.20050061
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
晶核剂对CMAS系微晶玻璃结构和性能的影响
石永恒, 芶立
四川大学材料科学与工程学院,成都 610065
Effect of Nucleating Agents on Structure and Properties of CMAS Glass-ceramics
SHI Yongheng, GOU Li
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 5058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对炉渣或者尾矿中存在晶核剂成分TiO2和Fe2O3,设计了TiO2、TiO2+ZrO2和TiO2+Fe2O3三种晶核剂组合。采用熔融法和两步结晶热处理制备了CaO-MgO-Al2O3-SiO2(CMAS)系微晶玻璃。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、显微硬度测试仪和宽频介电阻抗谱仪研究了CMAS系微晶玻璃晶相组成、显微结构、力学性能和介电性能。结果表明,TiO2单独加入时会析出透辉石和钛酸镁;TiO2和ZrO2复合加入后析出了镁硅钙石相,当加入量增多后会额外析出钛酸锆;TiO2和Fe2O3复合添加后则会析出四氧化三铁和褐斜闪石相。虽然晶相组成会随着晶核剂的种类改变,但晶粒尺寸均在200 nm以内,并且分布均匀,有利于提高微晶玻璃的力学性能。所有样品的维氏硬度(HV5)在8 GPa左右,断裂韧性在1.25 MPa·m1/2左右。当TiO2和Fe2O3复合加入量较多时,样品的维氏硬度可以达到8.15 GPa,有利于提高含钛或含铁固废的利用率。在合适的晶核剂含量下,样品的介电常数在11左右,介质损耗在10-3数量级,表明这种微晶玻璃在电子封装或者移动通讯领域也具有应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石永恒
芶立
关键词:  微晶玻璃  钙镁铝硅系  显微结构  力学性能  介电性能    
Abstract: In view of the fact that TiO2 and Fe2O3 in slag or tailings can be used as nucleating agent, three kinds of nucleating agent of TiO2, TiO2+ZrO2 and TiO2+Fe2O3 were designed to prepare CaO-MgO-Al2O3-SiO2 (CMAS) system glass ceramics by melting method and two-steps crystallization heat-treatment. The crystalline phase, microstructure, mechanical properties and dielectric properties of CMAS system glass-ceramics were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester and broadband dielectric impedance spectrometer, respectively. The results show that diopside and magnesium titanate occur when TiO2 is added solely; the merwinite is precipitated when TiO2 and ZrO2 are added together, and zirconium titanate is precipitated additionally when the amount of TiO2 is increased; Fe3O4 and rhoenite occur when TiO2 and Fe2O3 are added together. Although the phase composition changes with the type of nucleating agent, the grain size is within 200 nm with uniform distribution, giving rise to the mechanical properties of glass-ceramics. The Vickers hardness (HV5) of all samples is about 8 GPa, while the fracture toughness is around 1.25 MPa·m1/2. When the addition of TiO2 and Fe2O3 increases, the Vickers hardness of the sample can reach 8.15 GPa, which is conducive to the abundant addition of solid waste containing titanium or iron. The dielectric constant of the sample is about 11 with the dielectric loss about 10-3 order of magnitude under the appropriate content of nucleating agent. It is indicated that this kind of glass-ceramics also has application prospect in the field of electronic packaging or mobile communication.
Key words:  glass-ceramics    calcium magnesium aluminum silicon system    microstructure    mechanical properties    dielectric properties
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TQ171  
基金资助: 四川省科技计划(2018GZ0023)
通讯作者:  gouli@scu.edu.cn   
作者简介:  石永恒,于2017年9月至2020年6月在四川大学攻读硕士学位,主要从事无机功能材料的研究。
芶立,1994年毕业于四川大学,获得理学博士学位。2008—2009年在美国凯斯西储大学作访问学者,现任四川大学材料科学与工程学院教授。研究方向为薄膜材料和陶瓷材料,在国内外学术期刊发表学术论文100余篇,其中SCI、EI检索80余篇。
引用本文:    
石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
SHI Yongheng, GOU Li. Effect of Nucleating Agents on Structure and Properties of CMAS Glass-ceramics. Materials Reports, 2021, 35(5): 5027-5031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050061  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5027
1 Guo X Z, Cai X B, Song J, et al. Journal of Non-Crystalline Solids,2014,405,63.
2 Gui M M, Cheng J S, Qian S Y, et al. Bulletin of the Chinese Ceramic Society,2016,35(2),628(in Chinese).
桂濛濛,程金树,骞少阳,等.硅酸盐通报,2016,35(2),628.
3 Peng K, Lv C Z, Yang H M. Ceramics International,2014,40(7),10291.
4 Fan C S, Li K C. Ceramics International,2014,40(5),7117.
5 Xiao H N, Cheng Y, Yu L P, et al. Materials Science & Engineering A,2006,431(1-2),191.
6 Zhao M Z, Cao J W, Wang Z, et al. Journal of Non-Crystalline Solids,2019,513,144.
7 Kang J F, Cheng J S, Lou X C, et al. Transactions of the Indian Ceramic Society,2015,74(4),218.
8 Li Y H, Yang Z Y, Wang J Z, et al. Iron Steel Vanadium Titanium,2016,37(1),72(in Chinese).
李要辉,杨志远,王晋珍,等.钢铁钒钛,2016,37(1),72.
9 Pinckney L R, Beall G H. Journal of Non-Crystalline Solids,1997,219(97),219.
10 Hsiang H I, Yung S W, Wang C C. Ceramics International,2014,40(10,Part A),15807.
11 Liu F, Huang X P, Qu J J, et al. Journal of Non-Crystalline Solids,2018,481,329.
12 Zitani M K, Ebadzadeh T, Banijamali S, et al. Journal of Non-Crystalline Solids,2018,487,65.
13 Huang X P, Yuan C L, Liu X Y et al. Journal of Non-Crystalline Solids,2017,459,123.
14 Ohsato H, Kim J S, Cheon C I, et al. Ceramics International,2015,41,S588.
15 Barbieri L, Bondioli F, Lancellotti I, et al. Journal of the American Ceramic Society,2005,88(11),3131.
16 Mukherjee D P, Das S K. Journal of Asian Ceramic Societies,2016,4(1),55.
17 Seidel S, Dittmer M, Höland W, et al. Journal of the European Ceramic Society,2017,37(7),2685.
18 Du Y S, Li B W, Zhang X F, et al. Journal of Synthetic Crystals,2013,42(10),2170(in Chinese).
杜永胜,李保卫,张雪峰,等.人工晶体学报,2013,42(10),2170.
19 Luo J Y, Zhou X Q, Li J Z. Journal of the Chinese Ceramic Society,1979(3),52(in Chinese).
骆杰耀,周雪琴,李家治.硅酸盐学报,1979(3),52.
20 Hu A M, Liang K M, Zhou F, et al. Journal of Inorganic Materials,2005,20(2),279(in Chinese).
胡安民,梁开明,周锋,等.无机材料学报,2005,20(2),279.
21 Ismail M M, Rafeeq S N, Sulaiman J M A, et al. Applied Physics A,2018,124(5),380.
[1] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[2] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[3] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[4] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[5] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[6] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[7] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[8] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[9] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[10] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[11] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[12] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[13] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[14] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[15] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed