Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5011-5026    https://doi.org/10.11896/cldb.20030178
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
铁尾矿制备新型建筑材料的国内外进展
路畅1, 陈洪运1, 傅梁杰1,2,3, 田光燕4, 张红4, 梁金生4, 杨华明1,2,3
1 中南大学资源加工与生物工程学院,长沙 410083
2 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
3 中南大学建筑材料行业黏土矿物功能材料重点实验室,长沙 410083
4 河北工业大学生态环境与信息特种功能材料教育部重点实验室,天津 300130
Research Progress on the Preparation of New Building Materials Using Iron Tailings
LU Chang1, CHEN Hongyun1, FU Liangjie1,2,3, TIAN Guangyan4, ZHANG Hong4, LIANG Jinsheng4, YANG Huaming1,2,3
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2 Key Laboratory for Mineral Materials and Application of Hunan Province, Central South University, Changsha 410083, China
3 Key Laboratory of Clay Mineral Functional Materials in China Building Materials Industry, Central South University, Changsha 410083, China
4 Key Laboratory of Special Functional Materials for Ecological Environment and Information of Ministry of Education, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 26443KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁尾矿是铁矿石经加工及利用过程中产生的有价元素含量较低的部分,是矿山固体废弃物的重要组成之一,也是一种宝贵的二次资源。大量不可回收的铁尾矿主要堆存在尾矿库中,既浪费土地资源,又存在安全隐患和环境危害。高效加工利用铁尾矿是节能环保、提高经济效益的有效途径。铁尾矿是一种精细、稳定、复杂的材料,主要由二氧化硅和氧化铁组成,与天然砂矿物成分十分接近,将铁尾矿应用于新型建筑材料领域是尾矿综合利用的重要发展方向。
新型建筑材料是在传统建筑材料的基础上,性能得以提升、功能得以完善或增加的建筑材料,具有高强、轻质、节能和环境污染小的特点。国内外就铁尾矿在新型建筑材料方面的开发做了大量的研究,结果表明,铁尾矿中的化学组成通过校正原料的调整,可以成功地运用到各种建筑材料,如环保砖、建筑吸隔声材料、微晶玻璃、建筑陶瓷、多孔保温材料及涂料等。
有研究表明,对铁尾矿添加煤矸石、粉煤灰等物质,可以弥补铁尾矿作为建筑制品原料的不足,制备的新型尾矿墙体材料具有高强度、耐盐碱腐蚀性;利用多种类型的铁尾矿均可制备出主晶相为辉石的微晶玻璃,其具有较好的耐酸碱性能、抗压强度和抗折强度;制备的保温隔热材料的力学性能和保温隔热性能较好,有研究表明中试实验的材料导热系数可达0.085 W/(m·K)。铁尾矿还可以应用到涂料领域,由于铁尾矿中含有一定量的氧化铁,而氧化铁在正常环境条件下具有较高的稳定性,广泛应用于涂料、塑料、纸张和陶瓷等领域。有研究使用铁尾矿作为建筑乳胶漆颜料用于生产可持续建筑涂料,也有利用铁尾矿中的氧化铁作为制备彩色陶瓷玻化砖的天然着色剂。就目前而言,铁尾矿新型建筑材料大多还难以形成规模,多处于实验室阶段,推广方面还需要进行大量的工作。另外,很多高附加值建材的研究仍处于起步阶段,还需要进行大量深入的理论和实验研究,究其原因,主要是:①不同产地及工艺条件下的铁尾矿性质差异较大,导致原料稳定性存在一定问题;②铁尾矿建材产品由于原料的复杂性,其生产工艺不具有普适性,加大了研究及生产成本,这在一定程度上影响了其规模化发展;③铁尾矿建筑材料仍属于受运距限制的产品,由于大多数矿山远离城区,因此其尾矿产品无法实现大规模的集约经营,在进一步降低成本、提高质量方面受到制约;④铁尾矿新型建材的产品推广和市场开发也是制约其发展的一个问题。
本文综述了铁尾矿在新型建筑材料方面的研究进展,重点阐述了铁尾矿作为一类新型建筑材料资源的高值化利用现状,分析了铁尾矿在新型建筑材料行业发展中可能面临的问题并展望其发展前景,以期为铁尾矿在新型建筑材料领域的高值化利用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
路畅
陈洪运
傅梁杰
田光燕
张红
梁金生
杨华明
关键词:  铁尾矿  高效加工利用  新型尾矿墙体材料  建筑陶瓷装饰材料  建筑保温隔热材料    
Abstract: Iron tailings are the parts containing small amounts of valuable elements and produced in the process of processing and utilization of iron ore. The iron tailing is one of the important components of solid wastes in mines and a valuable secondary resource. Abundant of non-recycled iron tailings are mainly disposed in iron tailings dam, which is a waste of land resource and also a potential threat to the environment. Efficient proces-sing and utilization of iron tailings is an effective way to energy efficiency, environmental protection and economic benefits. Iron tailings are fine, stable and complex materials, and mainly composed of silica and iron oxide, which is very close to the composition of natural placer minerals. It is an important development direction for the comprehensive utilization of iron tailing to apply to the field of new building materials.
New building materials are the building materials whose performance and function are improved or increased on the basis of traditional building materials. The new building materials have the characteristics of high strength, light weight, energy saving and environmental protection. A lot of research has been done on the development of new building materials for iron tailings at home and abroad. According to the relevant data, iron tailings can be successfully applied to all kinds of building materials, such as environmental brick, building sound insulation material, glass-ceramics, building ceramics, porous insulation material and paint by adjusting chemical composition of iron tailings.
Researchers have shown that it can add coal gangue, fly ash and other materials to iron tailings to make up for the shortage of iron tailings as raw materials for construction products. The new tailings wall material has high strength and is resistant to saline-alkali corrosion. Glass ceramics with pyroxene as its main crystal phase can be prepared by using various types of iron tailings. It has good acid and alkaline resistance, compressive strength and flexural strength. The thermal insulation materials from iron tailings have good mechanical properties and thermal insulation pro-perties. Because iron tailings contain a certain amount of iron oxide. Iron oxide has high stability under normal environmental conditions and is widely used in coatings, plastics, paper and ceramics. Iron tailings can also be applied to paint. There are studies on the use of iron tailings as a paint for building emulsion paint in the production of sustainable building coatings. Fe2O3 in iron tailings is also used as a natural colorant to prepare colored ceramic vitrified brick. At present, most of the new building materials of iron tailings are difficult to form a scale. The reasons are mainly as follows: (1) Under different producing areas and technological conditions, the iron tailings property differences, leading to poor stability of raw materials. (2) Because of the complexity of the raw materials, the production technology of iron tailings building materials products is not universal, which increases the cost of research and production. (3) As most mines are far from the city, iron tailings construction materials still belong to the products limited by the haul distance. (4) The product promotion and market development of new building materials of iron tailings are also a problem restricting its development.
This paper reviews the research progress of iron tailings in new building materials such as wall materials, building decoration materials and heat insulation materials. It focuses on high value utilization of iron tailings as a new building material resource. The problems that iron tailings may face in the development of new building materials industry are analyzed and its development prospect is forecasted. In order to provide reference for the high value utilization of iron tailings in the field of new building materials.
Key words:  iron tailings    efficient processing and utilization    advanced wall materials    building decoration materials    building thermal insulation materials
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TD926  
基金资助: 国家重点研发计划 (2017YFB0310903);中南大学研究生自主探索创新项目(2019zzts311)
通讯作者:  hmyang@csu.edu.cn   
作者简介:  路畅,2011年6月本科毕业于太原理工大学矿物加工工程专业,获工学学士学位;2014年6月毕业于中国矿业大学(北京)矿物加工工程专业,获工学硕士学位。现为中南大学资源加工与生物工程学院博士研究生,在杨华明教授的指导下进行研究工作。目前主要从事矿物材料、固废资源材料化应用的研究。
杨华明,工学博士,中南大学教授、博士研究生导师,中组部国家“万人计划”领军人才、国家杰出青年科学基金获得者、国家中青年科技创新领军人才、湖南省科技领军人才、教育部新世纪优秀人才,享受国务院政府特殊津贴。现任中国建筑材料行业黏土矿物功能材料重点实验室主任、矿物材料及其应用湖南省重点实验室主任、湖南省矿物材料国际联合实验室(国际科技创新合作基地)主任。在中南工业大学获学士、硕士和博士学位,先后在英国布里斯托大学、澳大利亚昆士兰大学、俄罗斯科学院固态化学研究所任访问学者。长期从事矿物材料、能源与环境材料、生物医学材料、材料计算、固废资源化等研究,致力于材料、矿物、化学、物理、生物医学等多学科交叉,主持国家自然科学基金、国家科技支撑、863课题、973专题、博士点基金、教育部重点项目等,在Adv. Funct. Mater.、Chem. Mater.、Appl. Catal. B、J. Mater. Chem.、J. Phys. Chem.、ChemComm、Adv. Mater. Interface、Am. Mineral.、Clay Clay Miner.、Appl. Clay Sci.等发表SCI论文180多篇(其中ESI高被引论文7篇,Nature指数论文5篇,封面和综述6篇),SCI引用5000余次,授权专利32件,申请国际专利4件,撰写Elsevier著作1章、出版学术专著3部、教材3部,获省科技创新团队奖、省部级科技一等奖4项、二等奖2项和图书一等奖2项,获陈新民奖励基金优秀年轻教师奖、宝钢优秀教师奖、中国硅酸盐学会青年科技奖等。担任国际期刊Clay Minerals副主编、Mine-rals专辑客座编辑、《材料导报》编委、第22届国际矿物学大会矿物材料分会主席,兼任中国硅酸盐学会矿物材料分会副理事长、中国矿物岩石地球化学学会矿物岩石材料专委会副主任、中国非金属矿工业协会常务理事等。
引用本文:    
路畅, 陈洪运, 傅梁杰, 田光燕, 张红, 梁金生, 杨华明. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011-5026.
LU Chang, CHEN Hongyun, FU Liangjie, TIAN Guangyan, ZHANG Hong, LIANG Jinsheng, YANG Huaming. Research Progress on the Preparation of New Building Materials Using Iron Tailings. Materials Reports, 2021, 35(5): 5011-5026.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030178  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5011
1 Wu R, Liu J. Advances in Materials Science and Engineering, DOI: org/10.1155/2018/9816923.
2 Bedi A, Singh B R, Deshmukh S K, et al. Journal of Environmental Management,2018,215,100.
3 Kinnunen P, Ismailov A, Solismaa S, et al. Journal of Cleaner Production,2018,174,634.
4 Xu D M, Zhan C L, Liu H X, et al. Environmental Science and Pollution Research,2019,26,35657.
5 Luo L, Li K, Fu W, et al. Construction and Building Materials,2020,232,117250.
6 Yao G, Wang Q, Wang Z, et al. Powder Technology,2020,360,863.
7 Zhou M, Zhu Z, Li B, et al. Journal of Wuhan University of Technology,2017,32(2),365.
8 Wang J. Preparation and properties of iron ore tailings porous materials. Master’s Thesis, Hebei University of Technology, China,2015(in Chinese).
王娟.铁尾矿多孔材料的制备及其性能研究.硕士学位论文,河北工业大学,2015.
9 Wu D L, Zhu S H, Wang Z. Journal of Qingdao Institute of Architecture and Engineering,2001,22(4),84(in Chinese).
吴德礼,朱申红,王铮.青岛建筑工程学院学报,2001,22(4),84.
10 Xiao L G, Yi J H, Cui Z X. Journal of Jilin Institute of Architecture & Civil Engineering,2010,27(4),22(in Chinese).
肖力光,伊晋宏,崔正旭.吉林建筑工程学院学报,2010,27(4),22.
11 Pan D A, Lu H Y, Liu X M, et al. Bulletin of the Chinese Ceramic Society,2019,38(10),3162(in Chinese).
潘德安,逯海洋,刘晓敏,等.硅酸盐通报,2019,38(10),3162.
12 Liu Z B, Guan Y H. Science and Technology Innovation Herald, DOI:10.16660/j.cnki.1674-098X.2018.02.025(in Chinese).
刘忠宝,关亚慧.科技创新导报,DOI:10.16660/j.cnki.1674-098X.2018.02.025.
13 Li B, Zhao Z, Tang B, et al. Earth and Environmental Science,2018,199,042055.
14 Chen Y L, Du J Y, Hou H B, et al. Materials Science and Engineering,2018,423,012103.
15 Huang Y G. Resources & Industries,2013,15(3),40(in Chinese).
黄勇刚.资源与产业,2013,15(3),40.
16 Chen H, Shen W G, Shan L, et al. Concrete,2012(2),88(in Chinese).
陈虎,沈卫国,单来,等.混凝土,2012(2),88.
17 Dang N Q. Shanxi Architecture,2019,45(13),70(in Chinese).
党楠茜.山西建筑,2019,45(13),70.
18 Li J J, Ding Y M, Lu W X. Fly Ash Comprehensive Utilization,2012(6),52(in Chinese).
李晶晶,丁益民,陆文雄.粉煤灰综合利用,2012(6),52.
19 Galvăo J L B, Andrade H D, Brigolini G J, et al. Journal of Cleaner Production,2018,200,412.
20 Li W, Lei G, Xu Y, et al. Journal of Cleaner Production,2018,204,685.
21 Xiong Z. The research of iron ore tailing particles’ damping and sound insulation performance. Master’s Thesis, Nanchang Hangkong University, China,2016(in Chinese).
熊哲.铁矿尾矿砂填充颗粒的阻尼和隔声性能的研究.硕士学位论文,南昌航空大学,2016.
22 Xiao T. Study on the sound absorption and sound insulation performance of noncylindrical hole in the composite plate grid embedded with iron tai-lings sand. Master’s Thesis, Nanchang Hangkong University, China,2017(in Chinese).
肖涛.铁尾矿砂复合板的非柱形孔吸隔声性能研究.硕士学位论文,南昌航空大学,2017.
23 Zhang C, Wang H, Li J. Journal of University of Science and Technology Liaoning,2018,41(6),406(in Chinese).
张春霖,王海,李静.辽宁科技大学学报,2018,41(6),406.
24 Song J, Cai X B, Xie Y, et al. New Building Materials,2014(9Z1),58(in Chinese).
宋杰,蔡晓波,谢园,等.新型建筑材料,2014(9Z1),58.
25 Han Q, Zhang Y. Journal of Shangluo University,2015,29(6),37(in Chinese).
韩茜,张洋.商洛学院学报,2015,29(6),37.
26 Sun Q Q, Nan N, Liu P. Journal of Shangluo University,2018,32(2),67(in Chinese).
孙强强,南宁,刘萍.商洛学院学报,2018,32(2),67.
27 Nan N, Liu P, Sun Q, et al. Contemporary Chemical Industry,2019,48(10),2199(in Chinese).
南宁,刘萍,孙强强,等.当代化工,2019,48(10),2199.
28 Chen X L. Multipurpose Utilization of Mineral resources,2011(5),41(in Chinese).
陈晓玲.矿产综合利用,2011(5),41.
29 Chen S J. Development of glass-ceramic Made by low-silicon iron tailings. Master’s Thesis, Wuhan University of Technology, China,2004(in Chinese).
陈盛建.低硅铁尾矿微晶玻璃的研制.硕士学位论文,武汉理工大学,2004.
30 Li M B, Zhao Y Q. Hunan Nonferrous Metals,2013,29(3),23(in Chinese).
李明碧,赵言勤.湖南有色金属,2013,29(3),23(in Chinese).
31 Shi Q, Cui W H, Sui Y L. China Ceramics,2012,48(10),55(in Chinese).
石棋,崔文豪,隋延力.中国陶瓷,2012,48(10),55.
32 Ni W, Zhang C Y, Zou Y M. Ceramics, DOI:10.19397/j.cnki.ceramics.1997.06.007(in Chinese).
倪文,张春艳,邹一民.陶瓷,DOI:10.19397/j.cnki.ceramics.1997.06.007.
33 Jiao J, Guo Z M, Liu X Q, et al. Metal Mine,2010(12),167(in Chinese).
焦娟,郭志猛,刘祥庆,等.金属矿山,2010(12),167.
34 Shi Q, Guo Y Z, Chen J Q, et al. China Ceramics,2011,47(9),41(in Chinese).
石棋,郭玉忠,陈井清,等.中国陶瓷,2011,47(9),41.
35 Sui Y L, Wang J Q, Yang F, et al. Metal World, DOI:10.3969/j.issn.1000-6826.2014.01.004(in Chinese).
隋延力,王继全,杨芳,等.金属世界,DOI:10.3969/j.issn.1000-6826.2014.01.004.
36 Liu Y Y, Xiao H, Li S D. Building Science,2009,25(12),63(in Chinese).
刘媛媛,肖慧,李寿德.建筑科学,2009,25(12),63.
37 Liu Y Y, Xiao H, Li S D. New Building Materials,2010,37(4),47(in Chinese).
刘媛媛,肖慧,李寿德.新型建筑材料,2010,37(4),47.
38 Gao J, Xu C W, Zhang Y, et al. Bulletin of the Chinese Ceramic Society,2012,31(6),1417(in Chinese).
高杰,徐长伟,张阳,等.硅酸盐通报,2012,31(6),1417.
39 Guo J W, Wang J H, Yang G H. Modern Mining,2009(10),23(in Chinese).
郭建文,王建华,杨国华.现代矿业,2009(10),23.
40 Xu H, Xu B, Chen X N. Mining Engineering,2017,15(5),21(in Chinese).
许晗,徐彪,陈煊年.矿业工程,2017,15(5),21.
41 Tang Z D, Chen G Y, Qu K H, et al. Metal Mine, DOI:10.19614/j.cnki.jsks.201806022(in Chinese).
唐志东,陈国岩,曲孔辉,等.金属矿山,DOI:10.19614/j.cnki.jsks.201806022.
42 Wang C L, Liang Q, Wang Y J, et al. Metal Mine,2013(2),160(in Chinese).
王长龙,梁庆,王颜军,等.金属矿山,2013(2),160.
43 Sun B Q, Fan S L. Metal Mine,1998(6),22(in Chinese).
孙炳泉,樊绍良.金属矿山,1998(6),22.
44 Zhang J R, Ni W, Jia Q M. Metal Mine, DOI:10.3321/j.issn:1001-1250.2007.03.023(in Chinese).
张锦瑞,倪文,贾清梅.金属矿山,DOI:10.3321/j.issn:1001-1250.2007.03.023.
45 Yin Z Y. Express Information of Mining Industry,2004(9),16(in Chinese).
殷召阳.矿业快报,2004(9),16.
46 Yu C G, Li X J, Zhao R Y. Cement Engineering, DOI:10.13697/j.cnki.32-1449/tu.2008.05.003(in Chinese).
余春刚,李心继,赵仁应.水泥工程,DOI:10.13697/j.cnki.32-1449/tu.2008.05.003.
47 Zhang S H. Metal Mine Design and Construction,1997,29(6),27(in Chinese).
张士宏.冶金矿山设计与建设,1997,29(6),27.
48 Yin H F, Wang M L, Ren Y, et al. Metal Mine, DOI:10.3321/j.issn:1001-1250.2006.08.020(in Chinese).
尹洪峰,王明利,任耘,等.金属矿山,DOI:10.3321/j.issn:1001-1250.2006.08.020.
49 Hu P, Zhang Y, Zhou Y, et al. Environmental Progress & Sustainable Energy, DOI:10.1002/ep.12776.
50 Zhuang J, Chen T J, Zhan R L, et al. Iron Steel Vanadium Titanium,2017,38(1),83(in Chinese).
庄骏,陈铁军,展仁礼,等.钢铁钒钛,2017,38(1),83.
51 Li B C, Shi Q, Hu H M, et al. China Ceramics,2014,50(9),82(in Chinese).
黎邦城,石棋,胡海明,等.中国陶瓷,2014,50(9),82.
52 Fu Q, Jin J W, Li L. Mining & Metallurgy,2017,26(3),94(in Chinese).
付强,金建文,李磊.矿冶,2017,26(3),94.
53 Freitas V A A, Breder S M, Silvas F P C, et al. Chemosphere,2019,219,328.
54 Etim R K, Eberemu A O, Osinubi K J. Transportation Geotechnics,2017,10,85.
55 Chinnappa G B, Karra R C. Journal of Hazardous Toxic & Radioactive Waste,2020,24(1),04019038-1.
56 Yang C, Li S, Zhang C, et al. Mineral Processing and Extractive Metallurgy Review,2018,39(1),44.
57 Luo L Q, Shu W, Cheng Q L, et al. Chemical Industry and Engineering Progress,2017,36(4),1482(in Chinese).
罗立群,舒伟,程琪林,等.化工进展,2017,36(4),1482.
58 Zhai J, Wang H, Chen P, et al. Chemosphere,2020,242,125178.
59 Chen Y L, Shi L, Du J Y, et al. Journal of building materials,2019,22(5),721(in Chinese).
陈永亮,石磊,杜金洋,等.建筑材料学报,2019,22(5),721.
60 Li R Q, Qu X L. Jianzhu yu Zhuangshi, DOI:10.3969/j.issn.1673-0038.2017.31.030(in Chinese).
李润祺,区雪连.建筑与装饰,DOI:10.3969/j.issn.1673-0038.2017.31.030.
61 范庆霞.中国专利,CN105645917A,2014.
62 Guo W, Du G, Zuo R, et al. Advanced Materials Research,2012,550-553,2373.
63 Yang C, Cui C, Qin J, et al. Construction and Building Materials,2014,70,36.
64 Zhao Y. Study on the preparation of salt and alkali resistant building bricks by Anshan iron tailings. Master’s Thesis, North China University of Science and Technology, China,2017(in Chinese).
赵阳.鞍山式铁尾矿制备耐盐碱建筑用砖的研究.硕士学位论文,华北理工大学,2017.
65 Mendes B C, Pedroti L G, Fontes M P F, et al. Construction and Buil-ding Materials,2019,227,116669.
66 Kumar R, Das P, Beulah M, et al. Journal of Advanced Manufacturing Systems,2017,16(3),275.
67 Zhang J, Zhang Y. China Building Materials,2007(1),50(in Chinese).
张晶,张轶.中国建材,2007(1),50.
68 Yu X. Study on preparation and crystallization properties of building glass-ceramics from iron tailings, Master’s Thesis, Shenyang Jianzhu University, China,2016(in Chinese).
于欣.铁尾矿建筑微晶玻璃的制备及其析晶性能研宄.硕士学位论文,沈阳建筑大学,2016.
69 Li S W. Study on synergistic preparation of glass-ceramics from iron tailings, fly ash and nickel-iron slag. Master’s Thesis, Shandong Jianzhu University, China,2019(in Chinese).
李省伟.铁尾矿-粉煤灰-镍铁渣协同制备微晶玻璃研究.硕士学位论文,山东建筑大学,2019.
70 Li B, Du Y, Zhang X, et al. Environmental Progress & Sustainable Energy,2015,34(2),420.
71 Zhang J R, Ni W, Wang Y. Metal Mine,2005(11),72(in Chinese).
张锦瑞,倪文,王亚利.金属矿山,2005(11),72.
72 Yao R, Liao S Y, Dai C L, et al. Journal of Magnetism and Magnetic Materials,2015,378,367.
73 Sui Y L, Wang J Q, Yang F, et al. Metal Mine,2014(1),177(in Chinese).
隋延力,王继全,杨芳,等.金属矿山,2014(1),177.
74 Das S K, Kumar S, Ramachandrarao P. Waste Management,2000,20,725.
75 孙煜,王竹梅,李月明,等.中国专利,CN109081677A,2018.
76 钟旭东.中国专利,CN101219910A,2008.
77 Zhang Y. New Building Materials,2017,44(5),116(in Chinese).
张莺.新型建筑材料,2017,44(5),116.
78 Gao J. Study on the preparation and crystallization mechanism of the porous glass-ceramics based on tailings. Master’s Thesis, Shenyang Jianzhu University, China,2012(in Chinese).
高杰.尾矿多孔玻璃陶瓷的制备及其晶化机理研究.硕士学位论文,沈阳建筑大学,2012.
79 Wang Y J. Study of foam ceramic prepared from high-sulfur ergo-gold tai-lings. Master’s Thesis, Wuhan University of Technology, China,2016(in Chinese).
王亚婕.金尾矿高硫选冶尾渣制备泡沫陶瓷.硕士学位论文,武汉理工大学,2016.
80 Cai L, Ma B, Li X, et al. Construction and Building Materials,2016,128,361.
81 Shu W, Luo L Q, Cheng Q L, et al. The Chinese Journal of Process Engineering,2015,15(6),1075(in Chinese).
舒伟,罗立群,程琪林,等.过程工程学报,2015,15(6),1075.
82 Ma B, Cai L, Li X, et al. Journal of Cleaner Production,2016,127,162.
83 Yi J H. The preparation of iron tailings foam concrete and its performance of research. Master’s Thesis, Jilin Institute of Architecture and Civil Engineering, China,2011(in Chinese).
伊晋宏.铁尾矿粉泡沬混凝土的制备及其性能的研究.硕士学位论文,吉林建筑工程大学,2011.
84 Li H, Li X G. In: The 17th national symposium on modern structural engineering. Tianjin,2017,pp.1686(in Chinese).
李涵,李晓光.第十七届全国现代结构工程学术研讨会.天津,2017,pp.1686.
85 Zhao S, Wen X, Ding X Q, et al. Concrete,2017(8),59(in Chinese).
赵苏,温煦,丁向群,等.混凝土,2017(8),59.
86 Wen X. Study on preparation of iron tailings foam concrete and shrinkage performance. Master’s Thesis, Shenyang Jianzhu University, China,2016(in Chinese).
温煦.铁尾矿泡沬混凝土的制备及其收缩性能研究.硕士论文论文,沈阳建筑大学,2016.
87 Xiao L G, Li Y, Zhang S T. Journal of Jilin Jianzhu University,2015,32(3),1(in Chinese).
肖力光,李杨,张士停.吉林建筑大学学报,2015,32(3),1.
88 Xiao L, Liu C, Zhang S, et al. Key Engineering Materials,2014,599,61.
89 Li J, Tian Y, Sun Q, et al. In: 5th International Conference on Civil Engineering and Transportation. Guangzhou,2015,pp.1371.
90 Chen F X. Study on the thermal insulation composite by iron tailings/fly ash/EPS/aerogel. Master’s Thesis, China University of Geosciences (Beijing), China,2019(in Chinese).
陈飞旭.铁尾矿/粉煤灰/EPS颗粒/气凝胶复合保温材料研究.硕士学位论文,中国地质大学(北京),2019.
91 Zhang L X, Hu C G, Song Y Z, et al. Construction Science and Technology,2016,3(31),80(in Chinese).
张立侠,胡晨光,宋裕增,等.建设科技,2016,3(31),80.
92 Ren J, Dai J, Li W. Applied Mechanics and Materials,2012,174-177,1541.
93 Zhang C X, Zhong G. Modern Mining,2017(2),147(in Chinese).
张丛香,钟刚.现代矿业,2017(2),147.
94 Wang Y C, Na Q. Metal Mine,2007(5),75(in Chinese).
王应灿,那琼.金属矿山,2007(5),75.
95 Yu Z X, Li H, Jiang Y F, et al. New Building Materials,2013(4),30(in Chinese).
喻振贤,李汇,姜玉凤,等.新型建筑材料,2013(4),30.
96 Yu J, Ke C Y, Yu Z X, et al. Metal Mine,2013(3),161(in Chinese).
喻杰,柯昌云,喻振贤,等.金属矿山,2013(3),161.
97 Lu H X. Science & Technology Vision, DOI:10.19694/j.cnki.issn2095-2457.2013.32.046(in Chinese).
陆红霞.科技视界,DOI:10.19694/j.cnki.issn2095-2457.2013.32.046.
98 Yang K. Building Energy Saving,2018(8),56(in Chinese).
杨宽.建筑节能,2018(8),56.
99 Zhang X G. Preparation and performance of form-stable composite phase change materials based on expanded perlite. Ph.D. Thesis, China University of Geosciences (Beijing), China,2019(in Chinese).
张晓光.膨胀珍珠岩基复合相变储能材料的制备和性能优化研究.博士学位论文,中国地质大学(北京),2019.
100 Li R, Zhou Y, Duan X. Applied Thermal Engineering,2019,151,115.
101 周洋,李润丰,刘晓倩,等.中国专利,CN110746941A,2020.
[1] 刘文博, 姚华彦, 王静峰, 陈传明, 刘玉亭. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020, 34(Z1): 268-270.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed