Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5001-5010    https://doi.org/10.11896/cldb.20060294
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除
赵晨1,2, 武文粉1,2, 孟子衡1,2, 李会泉1,2, 王晨晔1, 王兴瑞1
1 中国科学院过程工程研究所绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京 100190
2 中国科学院大学化学工程学院,北京 100049
Chemical Speciation and Removal Mechanism of Arsenic from Spent SCR Catalysts
ZHAO Chen1,2, WU Wenfen1,2, MENG Ziheng1,2, LI Huiquan1,2, WANG Chenye1, WANG Xingrui1
1 Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Cleaner Production Technology of Hydrometallurgy, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2 School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 6278KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以燃煤电厂废SCR脱硝催化剂为研究对象,通过XPS、ICP等检测方法研究废催化剂中杂质As元素的含量及赋存形态,发现废SCR催化剂中As元素存在形态为As2O3与As2O5。采用氧化碱浸技术,将难与NaOH反应的As2O3氧化为更易反应的As2O5,实现不同价态As元素的深度脱除。分别研究了氧化剂种类、氧化剂浓度、浸出剂浓度、反应温度、时间、液固比等因素对As元素脱除率的影响规律。结果表明,当反应温度为30 ℃、反应时间为4 h、H2O2浓度为5%(质量分数)、NaOH浓度为10%(质量分数)、液固比为2 mL/g时脱砷效果最佳,废催化剂中As含量由1 334×10-6降低至50×10-6,脱除率达到98.5%。所得产物为脱砷后催化剂,主要由锐钛矿型TiO2与少量WO3组成。通过EPR、XPS技术对H2O2强化浸出的反应机理进行研究,发现废SCR催化剂中V元素主要以V4+、V5+两种价态存在,其与NaOH反应生成的HV2O5-、VO43-和H2O2引发的类Fenton反应,可产生具有强氧化性的羟基自由基,将难以脱除的As3+氧化为更易溶于碱液的As5+,提高As元素的脱除率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晨
武文粉
孟子衡
李会泉
王晨晔
王兴瑞
关键词:  废SCR脱硝催化剂    废物处理  高级氧化工艺  浸取    
Abstract: The valence state and speciation of As in spent SCR catalysts used in coal-fired power plants was studied by XPS and ICP. The results show that As in spent SCR catalysts exists in the form of As2O3 and As2O5. As2O3 is difficult to be leached directly in weak alkaline solution, so it is difficult to be removed completely. In order to solve this problem, the alkali method with oxidant added was proposed. The effects of oxidizer species, time, temperature, NaOH concentration, H2O2 concentration, solid to liquid ratio on the removal efficiency of As were studied. The results show that the removal efficiency of As could reach as high as 98.5% under the optimal leaching conditions of reaction temperature 30 ℃, reaction time 4 h, NaOH concentration 10wt%, H2O2 concentration 5wt%, the ratio of liquid to solid 2 mL/g, and the arsenic oxide content in the solid was reduced from 1 334×10-6 to 50×10-6. The content of As in detoxified SCR catalysts could reach the requirement of fresh SCR catalysts. The removal mechanism of As was studied by EPR and XPS methods, and a new advanced oxidation process was used to treat spent SCR catalysts. The V2O5 in spent SCR catalysts reacts with NaOH to form HV2O5- and VO43-. Under the influence of HV2O5- and VO43- in the leaching solution, H2O2 produces hydroxyl radicals (·OH) in alkali solution. Hydroxyl radicals have strong oxidizing properties and oxidize As3+, which is not easily soluble in weak alkali, to As5+.
Key words:  spent SCR denitrification catalyst    arsenic    waste treatment    advanced oxidation process    leaching
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  X705  
基金资助: 国家重点研发计划(2019YFC1907502);国家自然科学基金青年基金(51904287)
通讯作者:  hqli@ipe.ac.cn   
作者简介:  赵晨,2017年毕业于山东师范大学,获工学学士学位,现为中国科学院过程工程研究所在读硕士研究生,在李会泉研究员的指导下,从事废SCR脱硝催化剂回收利用研究。
李会泉,中科院过程工程研究所研究员,中国科学院大学教授,博士研究生导师。1999年毕业于大连理工大学化学工程系,获博士学位。现任湿法冶金清洁生产技术国家工程实验室主任,国家能源清洁高效炼焦技术重点实验室(北京)主任,担任国家重点研发计划“固废资源化”重点专项总体专家组组长。主要从事资源循环利用清洁工艺与绿色过程的应用基础与工程化研究。先后获国家技术发明二等奖、北京市科技进步奖各一项,入选国家高层次人才。近年来,在J. Phys. Chem. B、Green Chemistry等期刊上发表高水平学术论文150余篇,申请技术发明专利100余项。
引用本文:    
赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
ZHAO Chen, WU Wenfen, MENG Ziheng, LI Huiquan, WANG Chenye, WANG Xingrui. Chemical Speciation and Removal Mechanism of Arsenic from Spent SCR Catalysts. Materials Reports, 2021, 35(5): 5001-5010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060294  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5001
1 Wang X W, Li L L, Sun J F, et al. Industry Catalysis,2019,27(2),1(in Chinese).
王修文,李露露,孙敬方,等.工业催化,2019,27(2),1.
2 Tan Q, Feng Y C. Chemical Industry and Engineering Progress,2011,30(S1),709(in Chinese).
谭青,冯雅晨.化工进展,2011,30(S1),709.
3 Cheng X, Bi X T. Particuology,2014,16(5),1.
4 Luca Lietti, Isabella Nova, Pio Forzatti, et al. Topics in Catalysis,2000,11-12(1),111.
5 Qi C P, Bao W J, Wang L G, et al. Catalysts,2017,7(4),1.
6 Li Q C. Study of deactivation, regeneration and recovery of vanadium-titanium based SCR catalysts. Ph.D. Thesis, Beijing University of Chemical Technology, China,2015(in Chinese).
李启超.钒钛基SCR催化剂的中毒、再生与回收.博士学位论文,北京化工大学,2015.
7 Lei T Y, Li Q C, Chen S F, et al. Chemical Engineering Journal,2016,296,1.
8 Liang C, Li J, Ge M. Chemical Engineering Journal,2011,170(2-3),531.
9 Wang H F. Research on mode of occurrence and release characteristics of arsenic. Master’s Thesis, North China Electric Power University, China,2018(in Chinese).
王贺飞.煤中砷的赋存形态及其释放特性研究.硕士学位论文,华北电力大学,2018.
10 Peng Y, Li J H, Si W Z, et al. Applied Catalysis B-Environmental,2015,168,195.
11 Lin Li, Lin Chen, Ming Kong, et al. RSC Advances,2019,9,37724.
12 Sun K Q, Zhong Q, Yu A H. China Environmental Protection Industry,2008(1),40(in Chinese).
孙克勤,钟秦,于爱华.中国环保产业,2008(1),40.
13 Chai L Y, Shi M Q, Liang Y J, et al. Journal of Central South University,2015,22(4),1276.
14 Liu J, Gao Y, Liu H, et al. International Journal of Hygiene & Environmental Health,2016,220,424.
15 史伟伟,吴凡,李晓刚,等.中国专利,ZL 201611100156.2,2017.
16 Lou W B, Zhang Y, Zheng S L, et al. Hydrometallurgy,2019,187,45.
17 Lee J B, Kim S K, Kim D W, et al. Korean Journal of Chemical Engineering,2012,29(2),270.
18 Li X, Li J, Peng Y, et al. Environmental Science & Technology,2015,49(16),9971.
19 Lu Q, Ali Z, Tang H, et al. Korean Journal of Chemical Engineering,2019,36(3),377.
20 Kato T, Sakusabe K, Mochizuki Y, et al. Reaction Chemistry & Enginee-ring,2019,4(7),1208.
21 Xue Y D, Zhang Y, Zhang Y, et al. Chemical Enginee-ring Journal,2017,325,544.
22 Yu G L, Zhang Y, Zheng S L, et al. The Chinese Journal of Process Engineering,2013,13(6),939(in Chinese).
余国林,张盈,郑诗礼,等.过程工程学报,2013,13(6),939.
23 Boopathy R, Das T. Arabian Journal for Science and Engineering,2018,43(11),6229.
24 Andreozzi R, Caprio V, Insola A, et al. Catalysis Today,1999,53(1),51.
25 Bokare A D, Choi W. Journal of Hazardous Materials,2014,275,121.
26 Gu Z P, Pan X Q, Guo S P, et al. Environmental Science and Pollution Research,2019,26(31),32666.
27 Akerdi A G, Bahrami S H. Journal of Environmental Chemical Enginee-ring,2019,7(5),103283.
28 Wu W F, Bao W J, Li H Q, et al. The Chinese Journal of Process Engineering,2016,16(5),794(in Chinese).
武文粉,包炜军,李会泉,等.过程工程学报,2016,16(5),794.
29 Wu W F, Wang C Y, Bao W J, et al. Hydrometallurgy,2018,179,52.
30 Fang G D, Deng Y M, Huang M, et al. Environmental Science & Techno-logy,2018,52(4),2178.
31 Zhang N Q, Xue C J, Wang K, et al. Chemical Engineering Journal,2020,380,122516.
32 Li Y Z, Luo Z M, Li Y, et al. Clays and Clay Minerals,2018,66(3),261.
33 Deng Y M,Wang R F,Fang G D,et al. Asian Journal of Ecotoxicology,2017,13(3),717(in Chinese).
邓亚梅,王荣富,方国东,等.生态毒理学报,2017,13(3),717.
34 Liu Z X, Xie C X, Shi N, et al. Qilu petrochemical technology,2009,37(2),20(in Chinese).
刘中兴,谢传欣,石宁,等.齐鲁石油化工,2009,37(2),20.
35 Wu W F, Li H Q, Meng Z H, et al. The Chinese Journal of Process Engineering,2019(S1),72(in Chinese).
武文粉,李会泉,孟子衡,等.过程工程学报,2019(S1),72.
36 Zhen Q. The study of adsorption of arsenate and arsenite by hydrous ceric oxide in aquatic conditions. Master’s Thesis, Xiamen University, China,2008(in Chinese).
甄青.水中氧化铈吸附水中三价砷和五价砷的研究.硕士学位论文,厦门大学,2008.
37 Zhao H X. Research on solvent extraction separation of arsenic in alkaline solutions. Master’s Thesis, Jiangxi University of Science and Technology, China,2015(in Chinese).
赵洪兴.碱性溶液中砷萃取分离研究.硕士学位论文,江西理工大学,2015.
38 He Y F. Chemical Engineering of Oil & Gas,1983,12(3),5(in Chinese).
何云峰.石油与天然气化工,1983,12(3),5.
39 Fairbrother F. Journal of the Less Common Metals,1977,51(2),353.
[1] 杨亚杰, 苏文勇, 衡成林, 王锋. 不同电极构型的砷烯和砷化锑扩展分子的电子输运性质[J]. 材料导报, 2020, 34(18): 18039-18043.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 王学谦, 谢怡冰, 宁平, 王郎郎, 林奕龙, 黄红旗. 改性吸附剂脱除工业废气中AsH3研究进展[J]. 材料导报, 2018, 32(23): 4089-4099.
[4] 李学鹏, 刘大春, 王娟. 含砷铜烟尘砷的选择性分离实验[J]. 材料导报, 2018, 32(18): 3110-3115.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed