Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3110-3115    https://doi.org/10.11896/j.issn.1005-023X.2018.18.003
  无机非金属及其复合材料 |
含砷铜烟尘砷的选择性分离实验
李学鹏1, 刘大春1, 王娟2
1 昆明理工大学真空冶金国家工程实验室,昆明 650093;
2 云南大学数理与统计学院,昆明 650093
Selective Separation Experiments of As from Copper Dust Containing As
LI Xuepeng1, LIU Dachun1, WANG Juan2
1 National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093;
2 School of Mathematics and Statistics, Yunnan University, Kunming 650093
下载:  全 文 ( PDF ) ( 3232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在氮气气氛下,采用低温焙烧的方法对含砷铜烟尘中的砷进行选择性分离,研究了温度、氮气流量和焙烧时间的变化对砷挥发率的影响,用X射线衍射分析、差热-差重分析等方法研究了含砷铜烟尘中砷的挥发规律,并分析了砷挥发过程的动力学。结果表明,含砷铜烟尘中砷的选择性分离应在低温下进行,避免高温下Zn、Pb挥发损失和As2O3生成难挥发的砷酸盐。在250 ℃,氮气流量300 mL/min、焙烧120 min的条件下,砷的挥发率为95.68%,渣中砷的含量为0.79%,其他有价金属基本不挥发,实现了砷与其他有价金属的选择性分离,砷以初级As2O3产品回收,纯度为96.85%。动力学研究表明,在一定范围内,砷的低温选择性挥发过程符合收缩核模型,其表观活化能为19.71 kJ/mol,该过程受内扩散控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李学鹏
刘大春
王娟
关键词:  含砷铜烟尘  三氧化二砷  砷酸盐  挥发  动力学    
Abstract: In order to separate As from As-contained dust, the dust was treated by roasting at low temperature under nitrogen atmosphere. The influence of temperature, nitrogen flow rate and roasting time on the evaporation rate of As were discussed in this paper. The methods such as XRD analysis and thermogravimetric analysis were employed to study the evaporation process of As. The kinetics of As evaporation was also investigated. It was demonstrated that selective separation of As should be taken at low temperature in order to avoid evaporation loss of Zn, Pb at high temperature and producing arsenates which are hard to volatile. The evaporation rate of As was 95.68%, the content of arsenic in the slag was 0.79%, and other valuable metals were not volatile under the conditions of roasting temperature of 250 ℃, nitrogen flow rate of 300 mL/min and roasting time of 120 min. As was selectively separated from other valuable metals and was recovered in the form of As2O3 with a purity of 96.85%. It was demonstrated by kine-tic study that the selective separation process of As at low temperature was in accordance with the shrinking ore model in a certain range. The apparent activation energy was 19.71 kJ/mol and As evaporation process was controlled by internal diffusion.
Key words:  copper dust containing As    arsenic trioxide    arsenate    evaporation    kinetics
                    发布日期:  2018-10-18
ZTFLH:  TF046  
基金资助: 国家自然科学基金(U1502271)
通讯作者:  刘大春:男,1965年生,博士研究生导师,主要研究方向为复杂二次资源综合利用 E-mail:240139925@qq.com   
作者简介:  李学鹏:男,1985年生,博士,主要研究方向为含砷铜烟尘的利用 E-mail:794392138@qq.com
引用本文:    
李学鹏, 刘大春, 王娟. 含砷铜烟尘砷的选择性分离实验[J]. 材料导报, 2018, 32(18): 3110-3115.
LI Xuepeng, LIU Dachun, WANG Juan. Selective Separation Experiments of As from Copper Dust Containing As. Materials Reports, 2018, 32(18): 3110-3115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.003  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3110
1 陈为亮,王君,焦志良,等.炼铜烟尘综合利用技术与实践[C]∥第十六届中国科协年会—全国重有色金属冶金技术交流会论文集.昆明,2014.
2 Yuan H B. Thermodynamic research and experiment of white arsenic extraction from high arsenic fume by pyrometallurgy[J]. Yunnan Metallurgy,2011,40(6):27(in Chinese).
袁海滨.高砷烟尘火法提取白砷实验及热力学研究[J].云南冶金,2011,40(6):27.
3 Liao Y L, Peng Z Q, Zhou J, et al. Research on kinetics of leaching of arsenic from dust containing high arsenic[J]. Journal of Sichuan University (Engineering Science Edition),2015,47(3):200(in Chinese).
廖亚龙,彭志强,周娟,等.高砷烟尘中砷的浸出动力学[J].四川大学学报(工程科学版),2015,47(3):200.
4 Nie Y. Research of valuable metals recovery from high-arsenic copper dust[J]. China nonferrous metallurgy,2016(5):68(in Chinese).
聂颖.从高砷铜烟尘中综合回收有价金属的研究[J].中国有色冶金,2016(5):68.
5 Sun L D, Li J, Guang M, et al. Kinetics of sulfuric acid leaching of copper from copper smelting ashes[J].Mining and Metallurgical Engineering,2016,36(1):97(in Chinese).
孙乐栋,李杰,光明,等.炼铜烟灰硫酸浸出及铜浸出动力学研究[J].矿冶工程,2016,36(1):97.
6 Chen W B, Lu X W, Li Y L, et al. Study on process of removing arsenic from leaching residue of copper smelting ESP ash[J]. Inorganic Chemicals Industry,2016,48(5):48(in Chinese).
陈文波,鲁兴武,李俞良,等.铜冶炼电收尘烟灰浸出渣脱砷工艺研究[J].无机盐工业,2016,48(5):48.
7 Yang C, Li H, Liu Y. Study on recovery of Cu, Zn from copper converter dust[J]. Hydrometallurgy of China,2016,35(2):120(in Chinese).
杨超,李辉,刘岩.从铜转炉烟灰中回收铜锌试验研究[J].湿法冶金,2016,35(2):120.
8 Yuan H B, Zhu Y Y, Zhang J B, et al. Process of high-arsenic dust containing tin evaporation from DC submerged arc furnace[J]. Journal of Central South University(Science and Technology),2013,44(6):2200(in Chinese).
袁海滨,朱玉艳,张继斌,等.高砷含锡烟尘直流矿热炉挥发的工艺[J].中南大学学报(自然科学版),2013,44(6):2200.
9 Zhou R H. Treatment process of converter dust collection dust[J]. Nonferrous Metals (Extractive Metallurgy),1989(4):40(in Chinese).
周荣华.转炉电收尘烟灰处理工艺[J].有色金属(冶炼部分):1989(4):40.
10 Zhu L D, Lu X W. Comprehensive recovery of copper smelting ESP dust[J].China Metallurgy,2016,26(6):6(in Chinese).
朱来东,鲁兴武.铜冶炼电收尘烟灰综合回收工艺[J].中国冶金,2016,26(6):6.
11 Han G H. Study on recovery of copper, zinc and arsenic removal from high arsenic acid leaching liquor [D]. Urumqi: Xinjiang University,2015(in Chinese).
韩光辉.高砷酸性浸出液中回收铜、锌及除砷的研究[D].乌鲁木齐:新疆大学,2015.
12 Fan Y Q, Cai B, Du C Y. Hydrometallurgical method for the extraction of copper and zinc from copper dusts[J]. China Nonferrous Metallurgy,2016,2:59(in Chinese).
樊有琪,蔡兵,杜春云.铜烟尘提取铜和锌的湿法工艺探索[J].中国有色冶金,2016,2:59.
13 Zhang R L, Qiu K Q, Xie Y J, et al. Treatment process of dust from flash smelting furnace at copper smelter by oxidative leaching and dearsenifying process from leaching solution[J]. Journal of Central South University (Science and Technology),2006,37(1):73(in Chinese).
张荣良,丘克强,谢永金,等.铜冶炼闪速炉烟尘氧化浸出与中和脱砷[J].中南大学学报(自然科学版),2006,37(1):73.
14 Xu Z F, Li Q, Nie H P. Pressure leaching technique of smelter dust with high-copper and high-arsenic[J]. Transactions of Nonferrous Metals Society of China,2010(20):s176(in Chinese).
徐志峰,李强,聂华平.高砷铜烟尘的氧压浸出工艺[J].中国有色金属学报,2010(20):s176.
15 Wu Y L, Xu Z F, Hao S T. Thermodynamics and kinetics of alkaline leaching of arsenic in copper smelting dust[J].Nonferrous Me-tals (Extractive Metallurgy),2013(4):3(in Chinese).
吴玉林,徐志峰,郝士涛.炼铜烟灰碱浸脱砷的热力学及动力学[J].有色金属(冶炼部分),2013(4):3.
16 Chen W, Shen Q H, Wang D J, et al. Study on the new process for treating copper converter dusts[J]. Non-ferrous Mining and Metallurgy,2003,19(3):45(in Chinese).
陈雯,沈强华,王达建,等.铜转炉烟尘选冶联合处理新工艺研究[J].有色矿冶,2003,19(3):45.
17 Li L, Zhang R J, Liao B, et al. Separation of As from As and Sb contained smoke dust by selective oxidation[J]. The Chinese Journal of Process Engineering,2014,14(1):71(in Chinese).
李磊,张仁杰,廖彬,等.砷锑烟尘中砷与锑的选择性氧化分离[J].过程工程学报,2014,14(1):71.
18 黄位森.锡[M].北京:冶金工业出版社,2009:290.
19 Ou F W. Plant practice of top-blown converter treating low grade scrap of copper [D]. Kunming: Kunming University of Science and Technology,2014(in Chinese).
欧福文.低品位废杂铜顶吹转炉熔炼的生产实践[D].昆明:昆明理工大学,2014.
20 Jiang T, Huang Y F, Zhang Y B, et al. Behavior of arsenic in arsenic-bearing iron concentrate pellets by preoxidizing-weak reduction roasting process[J]. Journal of Central South University(Science and Technology),2010,41(1):1(in Chinese).
姜涛,黄艳芳,张元波,等.含砷铁精矿球团预氧化-弱还原焙烧过程中砷的挥发行为[J].中南大学学报(自然科学版),2010,41(1):1.
21 李洪桂.冶金原理[M].北京:科学出版社,2017:291.
22 Zhao H D, Gu G H, Chu Y G, et al. Kinetics of oxidative ammonia leaching of high alkali gangue and low grade copper oxidized ore[J]. Hydrometallurgy of China,2014,33(6):416(in Chinese).
赵洪冬,顾帼华,褚亦功,等.高碱度脉石低品位氧化铜矿氧化氨浸动力学[J].湿法冶金,2014,33(6):416.
23 孟繁明.冶金宏观动力学[M].北京:冶金工业出版社,2014:16.
[1] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[2] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[3] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[4] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[5] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[6] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[7] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[8] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[9] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[10] 蒋亮, 李佳欣, 吴婷, 杨车, 尹伟杰, 韩凤兰, 陈宇红. CaO-SiO2-FeO-MgO体系钢渣固相改质过程中的镁铁尖晶石生长机理[J]. 材料导报, 2019, 33(15): 2490-2496.
[11] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[12] 王义飞, 高东强, 田普建, 任威, 刘延辉, 宋文杰, 杨艳玲, 杨光. 高铌TiAl合金中包晶α相消除的热力学及动力学分析[J]. 材料导报, 2019, 33(12): 2014-2018.
[13] 胡洋, 赵祺, 芦艾, 王志勇, 沈思敏. 苯基硅橡胶泡沫的制备及阻尼性能[J]. 材料导报, 2019, 33(10): 1752-1755.
[14] 龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
[15] 谢佳乐, 杨萍萍, 李长明. 稳定高效α-Fe2O3光电化学水分解——合理的材料设计和载流子动力学[J]. 《材料导报》期刊社, 2018, 32(7): 1037-1056.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed