Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2777-2784    https://doi.org/10.11896/cldb.18090186
  金属与金属基复合材料 |
冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能
胡俊1, 任建伟1, 马巍1, 刘建华1, 王爱国2,
1 安徽建筑大学建筑结构与地下工程安徽重点实验室,合肥 230601
2 安徽建筑大学安徽先进建筑材料重点实验室,合肥 230601
Dynamic Performances of Graded Honeycomb Materials Containing Random Defects Under Impact Loading
HU Jun1, REN Jianwei1, MA Wei1, LIU Jianhua1, WANG Aiguo2 1
Anhui Key Laboratory of Architectural Structure and Underground Engineering of Anhui Architecture University, Hefei 230601
2 The Key Advanced Building Materials Laboratory of Anhui Architecture University, Hefei 230601
下载:  全 文 ( PDF ) ( 3615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 蜂窝金属材料由于生产工艺而产生材料梯度及随机缺陷等是不可避免的。本工作以材料梯度和随机缺陷为基础,探究了不同梯度和随机缺陷下蜂窝材料的动态力学性能,并通过变形均匀系数Φ来定量分析不同工况下材料的变形模式。结果表明:(1)无随机缺陷时,低速(v=20 m/s)冲击下,单层蜂窝材料的变形模式呈“X”型,多层蜂窝材料呈“V”型;高速(v=60 m/s)冲击下,蜂窝材料的冲击端出现惯性坍塌带,相对密度较小处出现“V”型变形带。有随机缺陷时,蜂窝材料的坍塌变形带呈弥散分布。(2)适当的随机缺陷和蜂窝梯度有利于改善整体材料变形,使材料的变形均匀系数Φ降低。(3)低速冲击下蜂窝材料的平台应力随梯度增加而降低,高速冲击下则随梯度增加而增加。同时,蜂窝材料的平台应力随缺陷率增大而降低,当随机缺陷率超过15%时,平台应力急剧降低,此时,随机缺陷率是影响材料动力学性能的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡俊
任建伟
马巍
刘建华
王爱国
关键词:  蜂窝材料  随机缺陷  梯度  冲击荷载  动力学性能    
Abstract: It is inevitable for honeycomb metal materials to generate graded density and random defects during its producing process. Based on the material gradient and random defects, this work investigated the dynamic performances of honeycomb materials with variable gradients and random defect contents. A coefficient, homogeneous deformation index Φ, was proposed to evaluate the deformation modes of materials with diffe-rent load conditions. The results could be concluded that: ⅰ When honeycombs are intact, the crushing mode of unilayer honeycomb presents a X-shaped mode and that of multilayer honeycombs presents a V-shaped mode under low speed impact loading(v=20 m/s); under high speed impact loading(v=60 m/s), honeycomb materials exist crushing bands caused by inertia around impact end, and exist V-shaped deformation bands in zone where the relative density of honeycombs is weaker. When honeycombs contain random defects, its deformation modes are distri-buted diffusely. ⅱ Moderate random defects and honeycomb gradient could improve its deformation uniformity, and reduce its index of Φ. ⅲ The plateau stresses of honeycombs decrease as its gradient increase when honeycombs are subjected to low-speed impact loading, while increases as its gradient increases when subjected to high-speed impact loading. Meanwhile, the plateau stresses decrease as random defects increase if the content of defects do not exceed 15%; and the plateau stresses will decrease sharply if the content of random defects exceed 15%. And in this stage, the content of random defects in honeycombs is the main factor for material's dynamic performances.
Key words:  honeycomb materials    random defects    gradient    impact loading    dynamic performances
                    发布日期:  2019-07-12
ZTFLH:  O347  
基金资助: 国家自然科学基金(51778003);安徽省教育厅高校自然科学研究重点项目(KJ2017A486)
作者简介:  胡俊,安徽建筑大学,副教授,硕士研究生导师。2012年中国科学技术大学近代力学系工学博士毕业。近5年主持或参与多项国家级及省部级科研项目,发表数十篇学术论文,其中EI/SCI收录多篇。其主要科研方向为高程及大跨度结构抗震、材料动力学性能等研究。
王爱国,安徽建筑大学,副教授,硕士研究生导师。2002年加入安徽建筑大学工作至今。2010年毕业于南京工业大学,获材料学博士学位。2017年于澳大利亚University of Southern Queensland, Centre for Future Materials做访问学者。Construction and Building MaterialsCement and Concrete Composites、《硅酸盐通报》《材料导报》等学术期刊审稿人,中国建筑学会建筑材料分会化学激发胶凝材料专业委员会委员。主要研究方向为高性能水泥基材料/建筑功能材料/固体废弃物综合利用。
引用本文:    
胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
HU Jun, REN Jianwei, MA Wei, LIU Jianhua, WANG Aiguo 1. Dynamic Performances of Graded Honeycomb Materials Containing Random Defects Under Impact Loading. Materials Reports, 2019, 33(16): 2777-2784.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090186  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2777
[1] Sun Y, Li Q M. International Journal of Impact Engineering, 2018,112, 74.
[2] Gibson L J, Ashby M F. Cellular solids: structure and properties (2nd ed), Cambridge University Press, Cambridge, UK, 1997.
[3] Yin H, Huang X, Scarpa F, et al. Composite Structures, 2018,192, 516.
[4] Kou D P, Yu J L, Zheng Z J. Chinese Journal of Theoretical Applied Mecha-nics, 2009,41(6), 859 (in Chinese).
寇东鹏, 虞吉林, 郑志军. 力学学报,2009,41(6),859.
[5] Wang A J, McDowell D L. International Journal of Mechanical Sciences, 2003,45(11),1799.
[6] Zhang J, Zhao G P, Lu T J. Engineering Mechanics, 2016,33(8),211(in Chinese).
张健, 赵桂平, 卢天健. 工程力学, 2016,33(8),211.
[7] Zhang Y F, Zhao L M. Explosive and Shock Waves, 2006,26(1),33(in Chinese).
张铱鈖, 赵隆茂. 爆炸与冲击,2006,26(1),33.
[8] Cao B T, Hou B, Zhao H, et al. International Journal of Impact Engineering,2018,113,98.
[9] Wang P, Wang X, Zheng Z, et al. Latin American Journal of Solid and Structures,2017,14(7),1251.
[10] Cai Z Y, Ding Y Y, Wang S L, et al. Explosive and Shock Waves, 2017,37(3),396 (in Chinese).
蔡正宇, 丁圆圆, 王士龙, 等. 爆炸与冲击,2017,37(3),396.
[11] Zhao L, Chen W Q. Applied Mathematics and Mechanics,2012,33(10),1143 (in Chinese).
赵莉, 陈伟球. 应用数学与力学,2012,33(10), 1143.
[12] Reid S R, Peng C. International Journal of Impact Engineering, 1997,19(5-6),531.
[13] E-NCAP. European new car assessment programme, Euro-NCAP,2017.
[14] Merrett R P, Langdo G S, Theobald M D. Materials and Design, 2013, 44,311.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[3] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[4] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[5] 尹洪峰, 党娟灵, 辛亚楼, 高魁, 汤云, 袁蝴蝶. 轻量耐火材料的研究现状与发展趋势[J]. 材料导报, 2018, 32(15): 2618-2625.
[6] 朱 敏,吴桂林,李玉胜,黄晓旭. 旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1645-1649.
[7] 王星星, 谭群燕, 薛鹏, 唐明奇, 龙伟民. 镀锡银钎料扩散过渡区的物相和形成机制*[J]. 《材料导报》期刊社, 2017, 31(8): 66-69.
[8] 杜文博, 姚正军, 陶学伟, 罗西希. 钛合金表面梯度Al2O3陶瓷涂层的高温抗氧化性能*[J]. 《材料导报》期刊社, 2017, 31(14): 57-60.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed