Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1645-1649    https://doi.org/10.11896/j.issn.1005-023X.2018.10.014
  材料研究 |
旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能
朱 敏1,吴桂林1,李玉胜2,黄晓旭1
1 重庆大学材料科学与工程学院,重庆 400030;
2 南京理工大学材料科学与工程学院,南京 210094
Microstructure and Mechanical Properties of 18CrNiMo7-6 Steel Processed by Rotationally Accelerated Shot Peening
ZHU Min1, WU Guilin1, LI Yusheng2, HUANG Xiaoxu1
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400030;
2 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094
下载:  全 文 ( PDF ) ( 5228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究首次采用一种高效率、低成本的大塑性变形技术——旋转加速喷丸技术(Rotationally accelerated shot peening)对正火后高温回火的18CrNiMo7-6钢进行表面纳米化处理,利用光学显微镜、扫描电子显微镜、电子背散射衍射技术、硬度测试以及拉伸测试等对不同喷丸参数的样品进行了微观组织和力学性能的表征。结果表明,旋转加速喷丸能够成功地在材料表面制备出梯度结构,从样品表面到芯部具有明显的显微组织梯度和硬度梯度;调节喷丸速度可以有效地调控材料显微组织,长时间喷丸易萌生微裂纹;在喷丸速度为40 m/s、喷丸时间为5 min的条件下处理,样品的表面完好,屈服强度提高了57%,达到512 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱 敏
吴桂林
李玉胜
黄晓旭
关键词:  旋转加速喷丸  18CrNiMo7-6钢  显微组织  力学性能  梯度结构    
Abstract: In the present work, normalized and high temperature tempered 18CrNiMo7-6 steel was firstly subjected to rotationally accelerated shot peening (RASP) processing, which was a low-cost and efficient severe plastic deformation (SPD) technique to produce nanostructured surface-layers of metals. The microstructure of the steel after RSAP processing was characterized by optical microscopy (OM), scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) techniques, and the mechanical properties were analyzed by microhardness measurements and tensile testing. Simultaneously, the effects of RASP parameters on the microstructural evolution and mechanical properties were analyzed. It is found that RASP successfully produced a steel with structural gradient and it had a obviously microhardness gradient form surface to the inner. Varying the shot peening velocity was an effective way to control the microstructure,while micro-cracks formed easily at the long shot peening time. With a peening velocity of 40 m/s and a peening time of 5 min,the sample had a harden surface without defects and the yield strength was improved by 57% to 512 MPa.
Key words:  rotationally accelerated shot peening    18CrNiMo7-6 steel    microstructure    mechanical properties    gradient structure
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG178  
基金资助: 国家重点研发计划专项(2016YFB0700403)
通讯作者:  黄晓旭:通信作者,男,1963年生,教授,研究方向为纳米结构材料及其强韧化机理、材料的先进表征技术 E-mail:xiaoxuhuang@cqu.edu.cn   
作者简介:  朱敏:男,1993年生,硕士研究生,研究方向为金属材料的表面纳米化 E-mail:zhumin118hai@163.com
引用本文:    
朱 敏,吴桂林,李玉胜,黄晓旭. 旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1645-1649.
ZHU Min, WU Guilin, LI Yusheng, HUANG Xiaoxu. Microstructure and Mechanical Properties of 18CrNiMo7-6 Steel Processed by Rotationally Accelerated Shot Peening. Materials Reports, 2018, 32(10): 1645-1649.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.014  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1645
1 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331:1587.
2 Cui X P, Qin C, Ji C T, et al. surface nanocrystallization of 0Cr21Mn17Mo2NbN0.83 high-nitrogen austenitic stainless steel induced by mechanical attrition & grinding treatment[J]. Materials Review B:Research Papers,2016,30(6):1(in Chinese).
崔晓鹏,秦超,季长涛,等.机械压磨诱导0Cr21Mn17Mo2NbN0.83高氮奥氏体不锈钢表面纳米化[J].材料导报:研究篇,2016,30(6):1.
3 Gao B, Wang J, Li L H, et al. Study on the structural property of surface mechanical pressure-torsion[J]. Materials Review B:Research Papers,2015,29(3):107(in Chinese).
高波,王进,李丽华,等.金属表面机械扭压处理组织性能研究[J].材料导报:研究篇,2015,29(3):107.
4 Ba D M, Ma S N, Meng F J, et al. Friction and wear behaviors of nanocrystalline surface layer of chrome-silicon alloy steel[J]. Surface and Coatings Technology,2007,202(2):254.
5 Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. Materials Science and Engineering: A,2007,445:281.
6 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences,2014,111(20):7197.
7 Wei Y, Li Y, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nature Communications,2014,5:3580.
8 Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science & Engineering A,2000,286(1):91.
9 Altenberger I, Scholtes B, Martin U, et al. Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304[J]. Materials Science & Engineering A,1999,264(1-2):1.
10 Nikitin I, Altenberger I, Maier H J, et al. Mechanical and thermal stability of mechanically induced near-surface nanostructures[J]. Materials Science & Engineering A,2005,403(1):318.
11 Majzoobi G H, Azadikhah K, Nemati J. The effects of deep rolling and shot peening on fretting fatigue resistance of aluminum-7075-T6[J]. Materials Science & Engineering A,2009,516(1):235.
12 Luo K Y, Lu J Z, Zhang Y K, et al. Effects of laser shock proces-sing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science & Engineering A,2011,528(13):4783.
13 Zhang B H, Zhang X N. Fabrication of nano titanium and its biomechanical property[J]. Materials Review,2007,21(4):129(in Chinese).
张保华,张小农.SMAT纳米钛的组织及力学性能研究[J].材料导报,2007,21(4):129.
14 Chen X H, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia,2005,52(10):1039.
15 Wang L M, Wang Z B, Lu K. Grain size effects on the austenitization process in a nanostructured ferritic steel[J]. Acta Materialia,2011,59(9):3710.
16 Li W L, Tao N R, Lu K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment[J]. Scripta Materialia,2008,59(5):546.
17 Li C, Cui W, Zhang Y. Surface self-nanocrystallization of α+ β titanium alloy by surface mechanical grinding treatment[J]. Metals and Materials International,2017,23(3):512.
18 Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening[J]. Journal of Materials Science & Technology,2017,33(7):758.
19 Liu J X, He Z J, Wang L H, et al. Study on the durable factors of the grain size in 18CrNiMo7-6 by heating and cooling method[J]. Advanced Materials Research,2011,194-196:228.20 Krawczyk J, Pawlowski B, Bala P. Banded microstructure in forged 18CrNiMo7-6 steel[J]. Metallurgy & Foundry Engineering,2009,35(1):45.
21 Dai R Y, Yu Z Q, Liu Z W, et al. Shot peening treatment and cha-racterization of 18CrNiMo7-6 steel after carburizing and quenching[J].Materials for Mechanical Engineering, 2013,37(5):100(in Chinese).
戴如勇,于中奇,刘忠伟,等.渗碳淬火18CrNiMo7-6钢的表面喷丸强化及表征[J].机械工程材料,2013,37(5):100.
22 Fu P, Zhan K, Jiang C. Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening[J]. Materials & Design,2013,51(5):309.
23 Fu P, Jiang C. Residual stress relaxation and micro-structural deve-lopment of the surface layer of 18CrNiMo7-6 steel after shot peening during isothermal annealing[J]. Materials & Design,2014,56(4):1034.
24 Fu P, Jiang C, Ji V. Microstructural evolution and mechanical response of the surface of 18CrNiMo7-6 steel after multistep shot peening during annealing[J]. Materials Transactions,2013,54(12):2180.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed