Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 66-69    https://doi.org/10.11896/j.issn.1005-023X.2017.08.014
  材料研究 |
镀锡银钎料扩散过渡区的物相和形成机制*
王星星1, 谭群燕1, 薛鹏2, 唐明奇1, 龙伟民3
1 华北水利水电大学机械学院, 郑州 450045;
2 南京理工大学材料科学与工程学院, 南京210094;
3 郑州机械研究所新型钎焊材料与技术国家重点实验室, 郑州 450001
Phase Composition and Formation Mechanism of Diffusion Transition Zone for Silver-based Brazing Alloys with Tin Coatings
WANG Xingxing1, TAN Qunyan1, XUE Peng2, TANG Mingqi1, LONG Weimin3
1 School of Mechanical Engineering,North China University of Water Resources and Electric Power, Zhengzhou 450045;
2 School of Materials Science and Engineering,Nanjing University of Science and Technology, Nanjing 210094;
3 State Key Laboratory of Advanced Brazing Filler Metals and Technology,Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 1469KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用温度梯度法对镀锡银钎料进行热扩散处理,形成了扩散过渡区。为了揭示镀锡银钎料扩散过渡区的形成机制和主要物相的形成过程,借助金相显微镜、扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射分析仪(XRD)对扩散过渡区的显微组织、Sn元素的面扫描分布、物相组成及形貌进行分析。研究表明,Sn元素在镀锡银钎料中分布均匀、无偏析,在扩散过渡区主要以棒状Ag3Sn相和块状Cu3Sn相存在。随着热扩散温度升高,Ag3Sn相和Cu3Sn相的相对衍射强度逐渐增大。Ag3Sn相的形成过程分为三个阶段:Ag3Sn颗粒相弥散分布、Ag3Sn颗粒相互相接触合并、生成大块棒状化合物相。Cu3Sn相主要是锡晶须生长冲破镀层的氧化膜,在张应力和压应力协同作用下形成。镀锡银钎料扩散过渡区的形成机制为“钎接、互扩散、亚稳态、合金化”。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王星星
谭群燕
薛鹏
唐明奇
龙伟民
关键词:  镀锡银钎料  扩散过渡区  温度梯度  物相  形成机制    
Abstract: Silver-based brazing alloys with tin coatings were thermally diffused using temperature gradient method,and diffusion transition zone would occur. In order to reveal the compound phases and its formation process of silver-based brazing alloys with tin coatings, the microstructure, mapping images of Sn, phase and morphology of diffusion transition zone were analyzed using the metallurgical microscope, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD), respectively. The results show that Sn are uniformly distributed in the diffusion transition zone. The microstructure of diffusion transition zone are mainly composed of Ag3Sn phase and Cu3Sn phase. The relative diffraction intensity of Ag3Sn phase and Cu3Sn phase gradually increase with the increase of diffusion temperature. The formation process of Ag3Sn phase can be divided into three stages,including Ag3Sn particle phase disperse distribution, Ag3Sn particle phase merging and Ag3Sn bulk compound phase generation. Because the coating oxidation is broke out through tin whisker growth and synergistic action is formed between tensile stress and compressive stress, Cu3Snp phase will be appeared at the diffusion transition zone. The formation mechanism of diffusion transition zone can be summarized as brazing, mutual diffusion, metastability, alloying.
Key words:  silver-based brazing alloy with tin coating    diffusion transition zone    temperature gradient    phase    formation mechanism
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG454  
基金资助: 河南省自然科学基金(HZK170158);河南省高等学校重点科研项目(17A430021);华北水利水电大学博士基金
作者简介:  王星星:男,1984年生,博士,讲师,主要研究方向为新型银基钎料及其钎焊工艺开发 E-mail:paperwxx@126.com
引用本文:    
王星星, 谭群燕, 薛鹏, 唐明奇, 龙伟民. 镀锡银钎料扩散过渡区的物相和形成机制*[J]. 《材料导报》期刊社, 2017, 31(8): 66-69.
WANG Xingxing, TAN Qunyan, XUE Peng, TANG Mingqi, LONG Weimin. Phase Composition and Formation Mechanism of Diffusion Transition Zone for Silver-based Brazing Alloys with Tin Coatings. Materials Reports, 2017, 31(8): 66-69.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.014  或          https://www.mater-rep.com/CN/Y2017/V31/I8/66
1 Daniel S,Gunther W,Sebastian S. Development of Ag-Cu-Zn-Sn brazing filler metals with a 10weight% reduction of silver and liquids temperature[J].China Weld(English Ed),2014,23(4):25.
2 Sui Fangfei,Long Weimin,Liu Shengxin, et al. Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag-Cu-Zn brazing filler metal[J]. Mater Des,2013,46:605.
3 Li M G,Sun D Q,Qiu X M,et al. Effect of tin on melting temperature and microstructure of Ag-Cu-Zn-Sn filler metals[J].Mater Sci Technol (United Kingdom),2005,21(11):1318.
4 Wierzbicki L J,Malec W,Stobrawa J,et al. Studies into new, environmentally friendly Ag-Cu-Zn-Sn brazing alloys of low silver content[J].Arch Metall Mater,2011,56(1):147.
5 Long Weimin,Zhang Guanxing,et al. In-situ synthesis of high st-rength Ag brazing filler metals during brazing process[J].Trans China Weld Inst,2015,36(11):1(in Chinese).
龙伟民,张冠星,等. 钎焊过程原位合成高强度银钎料[J].焊接学报,2015,36(11):1.
6 Winiowski A,Rózanski M. Impact of tin and nickel on the brazing properties of silver filler metals and on the strength of brazed joints made of stainless steels[J].Arch Metall Mater,2013,58(4):1007.
7 Long W M,Zhang G X,Zhang Q K. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J].Scr Mater,2016,110:41.
8 Wang Xingxing,Zhang Guanxing,Long Weimin,et al. Experimental research of Tin brush electro-plated on Ag45CuZn brazing filler me-tal[J].Rare Met Mater Eng,2013,42(11):2394(in Chinese).
王星星,张冠星,龙伟民,等. Ag45CuZn钎料表面刷镀锡的试验研究[J]. 稀有金属材料与工程,2013,42(11):2394.
9 Wang Xingxing,Long Weimin,Ma Jia,et al. Effect of electroplated tin coating on properties of BAg50CuZn brazing filler metal[J].Trans China Weld Inst,2014,35(9):61(in Chinese).
王星星,龙伟民,马佳,等. 锡镀层对BAg50CuZn钎料性能的影响[J].焊接学报,2014,35(9):61.
10 Wang Xingxing,Du Quanbin,Long Weimin,et al. Effect of micro tin brush-electroplated coating on properties of AgCuZnSn brazing filler metals[J].Trans China Weld Inst,2015,36(3):47(in Chinese).
王星星,杜全斌,龙伟民,等. 微米锡刷镀层对AgCuZnSn钎料性能的影响[J].焊接学报,2015,36(3):47.
11 Lao Bangshen,Gao Su,Zhang Qiyun. Nonequilibrium growth of intermetallics at the interface of liquid-solid metal[J].Acta Phys-Chim Sin,2001,17(5):453(in Chinese).
劳邦盛,高苏,张启运. 固液金属界面上金属间化合物的非平衡生长[J].物理化学学报,2001,17(5):453.
12 Lu K,Sui M L. Is the crystalline structure in nanocrystalline mate-rials different from the perfect crystal lattice?[J].J Mater Sci Technol,1993,9:419.
13 Wright W,Askeland D R. The science and engineering of materials[M].Bosto:Cengage Learning Custom Publishing,2015:82.
14 Meher H. Diffusion in solids:Fundamentals,methods, materials,diffusion-controlled processes[M]. Berlin:Springer-Verlag,2010:201.
15 Kalogeropoulou S,Rado C,Eustathopoulos N. Mechanisms of reactive wetting:The wetting to non-wettingase[J].Scr Mater,1999,41(7):723.
[1] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[2] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[3] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[4] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[5] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[6] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[7] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[8] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[9] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[10] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[11] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[12] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[13] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[14] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[15] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed