Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23080011-7    https://doi.org/10.11896/cldb.23080011
  无机非金属及其复合材料 |
硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析
陈君, 左晓宝*, 邹欲晓, 黎亮
南京理工大学理学院,南京 210094
Phase Evolution and Quantitative Analysis of Fly Ash-Cement Mortar in Sulfate-Chloride Environment
CHEN Jun, ZUO Xiaobao*, ZOU Yuxiao, LI Liang
School of Science, Nanjing University of Science & Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 5993KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了分析硫酸盐-氯盐环境下的水泥基材料的物相演变规律,本工作粉煤灰-水泥砂浆为研究对象,开展腐蚀溶液中的长期浸泡实验,并通过QXRD、SEM、MIP微观测试,分析砂浆中氯离子和硫酸根离子的交互作用、物相演变规律以及微结构变化。结果表明:在硫酸盐-氯盐侵蚀前、中期,离子间竞争作用导致侵蚀产物含量降低,延缓了试件中氯盐和硫酸盐的侵蚀进程;侵蚀后期,试件中侵蚀产物累积造成孔结构劣化,导致更多离子进入其内部,加速氯盐和硫酸盐侵蚀进程,此时,氯盐的存在不能再延缓硫酸盐的侵蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈君
左晓宝
邹欲晓
黎亮
关键词:  氯盐  硫酸盐  耦合侵蚀  水泥基材料  物相演变  定量分析    
Abstract: In order to investigate the phase evolution and characteristics of cement-based materials in sulfate-chloride environments, some fly ash(FA)-blended cement mortar specimens were taken as the research object to perform the long-term immersion experiments in sulfate and chloride solutions with different concentrations. By using QXRD、SEM、MIP measurements, the evolution of product phases and the change of microstructures as well as the interactions between chlorides and sulfates in FA-blended mortar were analyzed. Results show that, at the early and middle stages of solution immersion, the competitions between sulfates and chlorides can reduce the contents of their corrosion products, and it can slow down the process of sulfate and chloride attacks. Moreover, at the late stage of solution immersion, the continuous formation of corrosion pro-ducts can deteriorate the pore structure of FA-blended mortar, causing the penetration of more sulfates or chlorides into the specimens, and this can accelerate the process of chloride and sulfate attack, so the presence of chlorides in the solutions can no longer delay the sulfate attack on the FA-blended mortar.
Key words:  chlorides    sulfates    coupling erosion    cement-based materials    phase evolution    quantitative analysis
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(52078252)
通讯作者:  *左晓宝,南京理工大学教授,博士后,担任博士研究生导师。主要从事混凝土耐久性及结构防灾研究。已主持国家自然科学基金、江苏省自然科学基金等项目20余项;在国内外重要期刊上发表学术论文100余篇;获江苏省优秀博士学位论文、全国优秀博士学位论文提名论文和教育部自然科学一等奖、江苏省科技进步一等奖和中国建材联合会基础研究一等奖等。xbzuo@sina.com   
作者简介:  陈君,2021年6月于江苏大学获得工学学士学位。现为南京理工大学理学院土木工程系硕士研究生,在左晓宝教授的指导下进行研究,主要研究领域为混凝土耐久性等。
引用本文:    
陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
CHEN Jun, ZUO Xiaobao, ZOU Yuxiao, LI Liang. Phase Evolution and Quantitative Analysis of Fly Ash-Cement Mortar in Sulfate-Chloride Environment. Materials Reports, 2024, 38(22): 23080011-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080011  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23080011
1 Saha A K. Sustainable Environment Research, 2018, 28(1), 25.
2 Guo L P, Xue X L, Cao Y Z, et al. Materials Reports, 2021, 35(2), 2039 (in Chinese).
郭丽萍, 薛晓丽, 曹园章, 等. 材料导报, 2021, 35(2), 2039.
3 Geng J, Easterbrook D, Li L, et al. Cement and Concrete Research, 2015, 68, 211.
4 Zhang C L, Liu Q F. Materials Reports, 2022, 36(1), 69 (in Chinese).
张成琳, 刘清风. 材料导报, 2022, 36(1), 69.
5 Shi M X, Xie Y J, Liu B J. Journal of Building Materials, 2003(4), 350 (in Chinese).
石明霞, 谢友均, 刘宝举. 建筑材料学报, 2003(4), 350.
6 Liu K W, Deng M, Mo L W. Key Engineering Materials, 2013, 539, 124.
7 Jin Z Q. Durability and service life prediction of concrete exposed to harsh environment in West of China. Ph. D. Thesis, Southeast University, China, 2006 (in Chinese).
金祖权. 西部地区严酷环境下混凝土的耐久性与寿命预测. 博士学位论文, 东南大学, 2006.
8 Li H, Sun W, Liu J P. Concrete, 2013(1), 1 (in Chinese).
李华, 孙伟, 刘加平. 混凝土, 2013(1), 1.
9 Oliveira I, Cavalaro S H P, Aguado A. Cement and Concrete Research, 2013, 43(1), 95.
10 Cao Y Z, Guo L P, Zang W J, et al. Materials Reports, 2018, 32(23), 4142 (in Chinese).
曹园章, 郭丽萍, 臧文洁, 等. 材料导报, 2018, 32(23), 4142.
11 Maes M, Belie N D. Cement and Concrete Composites, 2014, 53(10), 59.
12 Wang P G, Mo R, Li S, et al. Construction and Building Materials, 2021, 288(4), 123121.
13 Li C, Fan Y F, Wang Y Y, et al. Journal of Building Materials, 2022, 25(5), 447 (in Chinese).
李闯, 范颖芳, 王耀宇, 等. 建筑材料学报, 2022, 25(5), 447.
14 Metalssi O O, Touhami R R, Barberon F, et al. Cement and Concrete Research, 2023, 164, 107065.
15 Liu J P, Liu Y J, Shi L, et al. Journal of Building Materials, 2016, 19(6), 993 (in Chinese).
刘加平, 刘玉静, 石亮, 等. 建筑材料学报, 2016, 19(6), 993.
16 Maes M, Belie N D. Construction and Building Materials, 2017, 155, 630.
17 Jin Z Q, Sun W, Zhang Y S, et al. Cement and Concrete Research, 2007, 37(8), 1223.
18 Li P, Yang D Y, Yu J B, et al. Concrete, 2014(8), 23 (in Chinese).
李鹏, 杨鼎宜, 俞君宝, 等. 混凝土, 2014(8), 23.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[3] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[4] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹混凝土的抗硫酸盐侵蚀和抗冻性能[J]. 材料导报, 2024, 38(22): 22100093-7.
[5] 张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
[6] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[7] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[8] 刘洋, 马占营, 李午戊, 郭乃妮, 侯磊, 樊星宇, 王樱嫒, 王尧宇. 多羧酸镍配合物催化降解罗丹明B的活性与机理[J]. 材料导报, 2024, 38(16): 24030040-6.
[9] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[10] 王露, 涂拥军, 高富豪, 刘数华. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 22120115-6.
[11] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[12] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[13] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[14] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[15] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed