Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21110247-11    https://doi.org/10.11896/cldb.21110247
  无机非金属及其复合材料 |
水泥基材料中的早强剂及其作用机理综述
庞超明*, 唐志远, 杨志远, 黄鹏
东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
Early Strengthening Agent in Cementitious Composites and Its Function Mechanism: a Review
PANG Chaoming*, TANG Zhiyuan, YANG Zhiyuan, HUANG Peng
Jiangsu Key Laboratory of Civil Engineering Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189, China
下载:  全 文 ( PDF ) ( 2795KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 早强型外加剂的研究主要集中在水泥基材料强度发展早期阶段的水化速率变化、产物变化、液相离子变化等方面,但对其作用机理和效果等缺乏系统性的总结。本文归纳了三类早强剂(无机、有机和复合)的早强机理及在各水化阶段的作用,得出以下结论:无机系早强剂通过提高体系碱度、压缩双电层、提供晶核以降低成核势垒等作用,破坏了水化阻滞膜或液相离解平衡,从而加速离解期的离解速率、增大液相中的离子浓度;此外,还通过加速诱导期水化产物的消耗,破坏水化反应平衡以加快水化产物钙矾石或钙铝水滑石形成,提高早强固相体积含量和体系致密度,从而提高早期强度。有机早强剂主要通过分散作用来促进离解速率,通过络合作用或水化作用破坏反应平衡,但掺量影响其早强效果和凝结速度。复合早强剂则协调多种机理来加快水化的整体进程,需注意避免新产物的生成阻碍原有活性组分正常的水化进程。总而言之,早强剂的选择应与胶凝材料体系相匹配,结合其作用机理促进各水化阶段强度发展。为满足尽可能早强的需求,阴离子宜选择硫酸系和硅酸系,阳离子宜选用Ca2+、Al3+,或较高活性成分且无耐久性隐患的Li+,有机系早强剂宜考虑该物质的分散作用和络合作用,但应注意避免长期性能的降低,以及它们对应的促凝和缓凝阈值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞超明
唐志远
杨志远
黄鹏
关键词:  水泥基材料  水化进程  早强技术  作用机理  复合早强剂    
Abstract: Research on early strengthening agent has mainly focused on the changes of hydration rate, product and liquid-phase ions in the early stage of strength development of cement-based materials. However, a systematic summary of its mechanism and effects is lacking. In this paper, therefore, the early strengthening mechanisms of three types of early strengthening agents (inorganic, organic and composite) and their functions in each hydration stage are reviewed. The following conclusions are summarized. The inorganic early strengthening agents destroy hydration-blocking film or liquid dissociation equilibrium by increasing the alkalinity of the system, compressing the double layer, and providing a crystal nucleus to reduce the nucleation barrier, so as to accelerate the dissociation rate during the dissociation period and increase the ion concentration in the liquid phase. Furthermore, the early strength will be improved during the induction period by accelerating the formation of ettringite or calcium alumina hydrotalcite, and by improving the volume content of the early strengthening solid phase and the density of the system through the consumption of hydration products and the destruction of the equilibrium of the hydration reaction. Organic early strengthening agents mainly promote the dissociation rate through dispersion or destroy the reaction equilibrium through complexation and hydration. The dosage, however, affects the early strength and setting rate. Compound early strengthening agents coordinate multiple mechanisms to accelerate the ove-rall hydration process, but more attention should be paid to avoiding the formation of new products which will the normal hydration process of the original active components. As the following suggestions proposed, the selection of early strengthening agents should match the binder and coordinate the early strengthening mechanism to promote the strength development of each hydration stage. To meet the demand of high early strength as early as possible, sulfuric acid and silicate are selected as anions, Ca2+ and Al3+ as cations, or Li+with higher active ingredients and no durability hazard. The dispersion and complexation of the organic early strengthening agent should be considered; however, more attention should be paid to the corresponding thresholds of rapid setting and retarding setting and to avoidance of the reduction of long-term performance.
Key words:  cementitious material    hydration process    early strengthening technology    function mechanism    compound early strengthening agent
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2021YFB3802000;2021YFB3802004)
通讯作者:  *庞超明,博士,高级工程师。1999年东南大学本科毕业,2006年东南大学硕士毕业,2010年东南大学博士毕业,期间2007—2008年在香港科技大学访学。一直从事先进土木工程材料理论、应用技术和新测试技术与方法的研究,建筑工业化与围护结构的材料设计与应用,研究工作与工程实践与应用结合紧密。目前研究方向:各种水泥基复合材料;智能与功能建筑材料的研究;固体废弃物资源的在建材中再利用技术研究;混凝土新型测试方法的研究与相应测试仪器开发。已完成省部级以上科研项目7项、核工业部项目5项、工程项目和企业合作项目20余项。发表科研论文30余篇,其中被SCI和EI收录10余篇;主编教材2部,参编2部,发表教改论文5篇。申请国家发明专利近20项,已获授权10余项。pangchao@seu.edu.cn   
引用本文:    
庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
PANG Chaoming, TANG Zhiyuan, YANG Zhiyuan, HUANG Peng. Early Strengthening Agent in Cementitious Composites and Its Function Mechanism: a Review. Materials Reports, 2023, 37(9): 21110247-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110247  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21110247
1 Zheng L X, Cao Y, Li Z Q, et al. Engineering Journal of Wuhan University, 2012, 45(1), 80 (in Chinese).
郑立霞, 曹源, 李卓球, 等. 武汉大学学报(工学版), 2012, 45(1), 80.
2 Du Q. Study on early strength properties and mechanism of polycarboxylate superplasticizer. Master's Thesis, Wuhan University of Technology, China, 2012 (in Chinese).
杜钦. 聚羧酸减水剂的早强性能及其机理研究. 硕士学位论文, 武汉理工大学, 2012.
3 Li Q Q. The effect of alcohol amine early strength agents for high-speed rail on the mechanical properties and microstructure of cement stone. Master's Thesis, Beijing Jiaotong University, China, 2019 (in Chinese).
李强强. 高铁用醇胺类早强剂对水泥石力学性能及微观结构的影响. 硕士学位论文, 北京交通大学, 2019.
4 Scrivener K L, Nonat A. Cement and Concrete Research, 2011, 41(7), 651.
5 Scrivener K L, Juilland P, Monteiro P J M. Cement and Concrete Research, 2015, 78, 38.
6 Minard H, Garrault S, Regnaud L, et al. Cement and Concrete Research, 2007, 37(10), 1418.
7 Zhang D K. Building Decoration Materials World, 2017(5), 44 (in Chinese).
张大康. 混凝土世界, 2017(5), 44.
8 Zhang Y M. Civil engineering materials, Southeast University Press, China, 2013, pp. 73 (in Chinese).
张亚梅. 土木工程材料, 东南大学出版社, 2013, pp. 73.
9 Zhao F N, Deng Z L, Zheng B C, et al. Journal of Wuhan University of Technology, 2013, 35(4), 11 (in Chinese).
赵芬娜, 邓最亮, 郑柏存, 等. 武汉理工大学学报, 2013, 35(4), 11.
10 Zhang J S. Morphology control and mechanism study of ettringite. Master's Thesis, China Academy of Architectural Materials Science, China, 2017 (in Chinese).
张金山. 钙矾石形貌调控及其机理研究. 硕士学位论文, 中国建筑材料科学研究总院, 2017.
11 Bensted J, Barnes P. Structure and properties of cement, Chemical Industry Press, China, 2009 (in Chinese).
Bensted J, Barnes P. 水泥的结构和性能, 化学工业出版社, 2009.
12 Chatterjee A K. Cement and Concrete Research, 1996, 26(8), 1213.
13 Zhang J. Sichuan Cement, 2014(10), 4 (in Chinese).
张洁. 四川水泥, 2014(10), 4.
14 Ding Z, Hong X, Zhu J X, et al. Journal of Chinese Electron Microscopy Society, 2018, 37(2), 145 (in Chinese).
丁铸, 洪鑫, 朱继翔, 等. 电子显微学报, 2018, 37(2), 145.
15 Cheng S K, Shui Z H, Yang R H, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(5), 1349 (in Chinese).
程书凯, 水中和, 杨荣辉, 等. 硅酸盐通报, 2016, 35(5), 1349.
16 Huang Z, Xing F, Xing Y Y, et al. Concrete, 2008(4), 51 (in Chinese).
黄战, 邢锋, 邢媛媛, 等. 混凝土, 2008(4), 51.
17 Zhang X W, Xiao R M, Zhang X. Journal of Building Materials, 2012, 15(2), 249 (in Chinese).
张小伟, 肖瑞敏, 张雄. 建筑材料学报, 2012, 15(2), 249.
18 Abouhussien A A, Hassan A A A. Construction and Building Materials, 2019, 229, 116858.
19 Wang Y, Ni W, Zhang S Q, et al. Metal Mine, 2019(4), 194 (in Chinese).
王莹, 倪文, 张思奇, 等. 金属矿山, 2019(4), 194.
20 Sandberg P J, Doncaster F. Cement & Concrete Research, 2004, 34(6), 973.
21 Papadakis V G. Cement and Concrete Research, 2000, 30(10), 1647.
22 Chindaprasirt P, Rukzon S. Construction and Building Materials, 2008, 22(8), 1601.
23 Lei Q H. China Building Materials Science & Technology, 2013, 22(4), 16 (in Chinese).
雷清海. 中国建材科技, 2013, 22(4), 16.
24 Amer A A, El-Hoseny S. Journal of Thermal Analysis and Calorimetry, 2017, 129(1), 33.
25 Tang J, Wei S, Li W, et al. Construction and Building Materials, 2019, 223, 177.
26 Reddy P N, Naqash J A. SN Applied Sciences, DOI:10. 1007/s42452-019-0790-z.
27 Shi Y Z, Wang Q, Tian L F, et al. Ready-mixed Concrete, 2010(8), 45 (in Chinese).
石运中, 王琦, 田陆飞, 等. 商品混凝土, 2010(8), 45.
28 Zhang F, Bai Y, Cai Y B, et al. Materials Reports A:Review Papers, 2017, 31(11), 106 (in Chinese).
张丰, 白银, 蔡跃波, 等. 材料导报:综述篇, 2017, 31(11), 106.
29 Zhang B W. Preparation and characterization of calcium aluminum-layered double hydroxides used as cement concrete agent. Master's Thesis, Beijing University of Chemical Technology, China, 2008 (in Chinese).
张博文. 钙铝层状双羟基复合金属氧化物的制备、表征及其作为混凝土早强材料的性能研究. 硕士学位论文, 北京化工大学, 2008.
30 Wang Y S, Ye Y Z, Zhong X Q, et al. Sichuan Architecture, 2005(4), 105 (in Chinese).
王玉锁, 叶跃忠, 钟新樵, 等. 四川建筑, 2005(4), 105.
31 Cao Y Z, Guo L P, Xue X L. Journal of Southeast University(Natural Science Edition), 2019, 49(4), 712 (in Chinese).
曹园章, 郭丽萍, 薛晓丽. 东南大学学报(自然科学版), 2019, 49(4), 712.
32 Zhang F, Bai Y, Cai Y B, et al. Journal of Hydraulic Engineering, 2019, 50(4), 506 (in Chinese).
张丰, 白银, 蔡跃波, 等. 水利学报, 2019, 50(4), 506.
33 Liu X H, Ma B G, Tan H B, et al. Construction and Building Materials, 2020, 232, 238.
34 Jiang M F, Lyu X J. Bulletin of the Chinese Ceramic Society, 2014, 33(10), 2527 (in Chinese).
姜梅芬, 吕宪俊. 硅酸盐通报, 2014, 33(10), 2527.
35 Yuan X, Li B, Cui G, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2010, 25(6), 1065.
36 Li G, Zhang J, Niu M, et al. Construction and Building Materials, DOI:10. 1016/j. conbuildmat. 2019. 117296.
37 Guo J E. Research on early strength agent of TSN concrete composite and its application in rescue engineering. Master's Thesis, Lanzhou Jiaotong University, China, 2015. (in Chinese).
郭俊娥. TSN混凝土复合早强剂的研究及其在抢险工程中的应用. 硕士学位论文, 兰州交通大学, 2015.
38 Zhou Feifei. Experimental research on key technologies on non-steam curing concrete. Master's Thesis, Southeast University, China, 2018 (in Chinese).
周飞飞. 免蒸养混凝土关键技术的试验研究. 硕士学位论文, 东南大学, 2018.
39 Yang B Y, Zhang J S, Li L H, et al. Journal of Liaoning University of Petroleum & Chemical Technology, 2012, 32(3), 29 (in Chinese).
杨波勇, 张金生, 李丽华, 等. 辽宁石油化工大学学报, 2012, 32(3), 29.
40 Aggoun S, Cheikh-Zouaoui M, Chikh N, et al. Construction and Building Materials, 2006, 22(2), 106.
41 Justnes H, Nygaard, E C. Advances in Cement Research, 1996, 8(31), 1766.
42 Zhang Y C, Qiao Z Q, Gao F, et al. Journal of Yangtze River Scientific Research Institute, 2019, 36(3), 103 (in Chinese).
张豫川, 乔子秦, 高飞, 等. 江科学院院报, 2019, 36(3), 103.
43 Wu Y F, Liu D R. Bulletin of the Chinese Ceramic Society, 2016, 35(10), 3351 (in Chinese).
吴亚飞, 刘德仁. 硅酸盐通报, 2016, 35(10), 3351.
44 Li Y K, Sun H H, Li S L, et al. Cement Technology, 2009(5), 29 (in Chinese).
李彦坤, 孙欢欢, 李书磊, 等. 水泥技术, 2009(5), 29.
45 Xiao L G, Zhang H L. Bulletin of the Chinese Ceramic Society, 2018, 37(7), 2115 (in Chinese).
肖力光, 张洪磊. 硅酸盐通报, 2018, 37(7), 2115.
46 Wang C W, Wang R H, Chen E D, et al. Acta Petrolei Sinica, 2011, 32(1), 140 (in Chinese).
王成文, 王瑞和, 陈二丁, 等. 石油学报, 2011, 32(1), 140.
47 Han J G, Yan P Y. Journal of the Chinese Ceramic Society, 2010, 38(4), 608 (in Chinese).
韩建国, 阎培渝. 硅酸盐学报, 2010, 38(4), 608.
48 Matusinović T, urlin D. Cement and Concrete Research, 1993, 23(4), 885.
49 Ding Q J, He L Y, Liang Y B, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2014, 38(3), 498 (in Chinese).
丁庆军, 何良玉, 梁远博, 等. 武汉理工大学学报(交通科学与工程版), 2014, 38(3), 498.
50 Liu Ji Q, Wang Z M. Concrete, 2008, 58(7), 58 (in Chinese).
刘进强, 王子明. 混凝土, 2008, 58(7), 58.
51 Wang Y, He F, Wang J, et al. Construction and Building Materials, 2019, 225, 591.
52 Wu P, Lv X J, Liang Z Q, et al. Metal Mine, 2014(12), 20 (in Chinese).
吴蓬, 吕宪俊, 梁志强, 等. 金属矿山, 2014(12), 20.
53 Currell B R, Grzeskowlak, R, Midgley, H G, et al. Cement and Concrete Research, 1987, 17(3), 420.
54 Zhang J F. Ready-Mixed Concrete, 2011(5), 32(in Chinese).
张景发. 商品混凝土, 2011(5), 32.
55 Lan M Z, Kan C Y, Yang J B. Concrete, 2012(9), 39 (in Chinese).
兰明章, 阚常玉, 杨进波. 混凝土, 2012(9), 39.
56 Tan H, Li M, Ren J, et al. Construction and Building Materials, 2019, 205, 414.
57 Wu Z W. Architecture Technology, 1999, 30(3), 160 (in Chinese).
吴中伟. 建筑技术, 1999, 30(3), 160.
58 Wang W S, Huang D X, Deng Z L, et al. New Building Materials, 2016, 43(5), 9 (in Chinese).
王伟山, 黄德祥, 邓最亮, 等. 新型建筑材料. 2016, 43(5), 9.
59 Zhang H, Wang P, Li W, et al. Advances in Cement Research, 2019, 31(9), 423.
60 Wang B Y, Yao W, Stephan D. Advances in Mechanical Engineering, DOI:10. 1177/1687814019840586.
61 John E, Epping J D, Stephan D. Construction and Building Materials, 2019, 228, 116723. 1.
62 Tan H B, Li M G, He X Y, et al. Journal of Cleaner Production, DOI:10. 1016/j. jclepro. 2019. 119528.
63 Pang X J, Liu Y, Chen L, et al. Applied Clay Science. 2018, 166, 174.
64 Chakraborty S, Jo B W, Sikandar M A. The Journal of Physical Chemistry C, 2016, 120(15), 8198.
65 Jo B W, Sikandar M A, Chakraborty S, et al. Advances in Materials Science and Engineering, 2017, 2017, 2526130. 1.
66 Jo B W, Chakraborty S, Sikandar M A, et al. Construction and Building Materials, 2015, 100, 31.
67 Wang Y. Expansive Agents & Expansive Concrete, 2007(4), 12 (in Chinese).
王勇. 膨胀剂与膨胀混凝土, 2007(4), 12.
68 Sun J A. Silicate Building Products, 1995(5), 40 (in Chinese).
孙江安. 硅酸盐建筑制品, 1995(5), 40.
69 He T S, Li G X, Shi C. Building materials, China Building Materials Press, China, 2018. pp. 76(in Chinese).
何廷树, 李国新, 史琛. 建筑材料, 中国建材工业出版社, 2018. pp. 76.
70 He Z, Li Y, Cai X H, et al. Journal of Hydraulic Engineering, 2016, 47(11), 1345 (in Chinese).
何真, 李洋, 蔡新华, 等. 水利学报, 2016, 47(11), 1345.
71 Kong X M, Lu Z C, Zhang C Y. Journal of the Chinese Ceramic Society, 2017, 45(2), 274 (in Chinese).
孔祥明, 卢子臣, 张朝阳. 硅酸盐学报, 2017, 45(2), 274.
72 Wang Z J, He T S. Highway, 2006(7), 149 (in Chinese).
王振军, 何廷树. 公路, 2006(7), 149.
73 Wu G H, Zhang X, Wu Y D. Cement, 2016(8), 1 (in Chinese).
伍根伙, 张雄, 吴永东. 水泥, 2016(8), 1.
74 Xu Y, Zhang X, Zhao M. Fly Ash Comprehensive Utilization, 2015(4), 12 (in Chinese).
许阳, 张雄, 赵明. 粉煤灰综合利用, 2015(4), 12.
75 Li X. Study on the effect of grinding aids single component on the hydration and properties of cement and clinker minerals. Master's Thesis, Wuhan University of Technology, China, 2011 (in Chinese).
李翔. 助磨剂单组分对水泥与熟料矿物水化及性能影响的研究. 硕士学位论文, 武汉理工大学, 2011.
76 Xie L. Research on the application of esterificated triethanolamine new cement grinding aids. Master's Thesis, Beijing Jiaotong University, China, 2010 (in Chinese).
谢磊. 酯化三乙醇胺类新型水泥助磨剂的应用研究. 硕士学位论文, 北京交通大学, 2010.
77 Lu X L. Research on the influence of modified alcohol amine additives on cement performance. Master's Thesis, University of Jinan, China, 2013 (in Chinese).
卢晓磊. 改性醇胺类外加剂对水泥性能影响研究. 硕士学位论文, 济南大学2013.
78 Wang J F, Wang D M, Wang Q B, et al. Ready-mixed Concrete, 2010(2), 31 (in Chinese).
王剑锋, 王栋民, 王启宝, 等. 商品混凝土, 2010(2), 31.
79 Xu Z Q, Li W F, Hu Y Y, et al. Journal of the Chinese Ceramic Society, 2016, 44(11), 1628 (in Chinese).
徐芝强, 李伟峰, 胡月阳, 等. 硅酸盐学报, 2016, 44(11), 1628.
80 Huang H, Wang Q, Li X, et al. Construction and Building Materials, 2018, 182, 516.
81 Heren Z, Olmez H. Cement & Concrete Research, 1997, 27(6), 805.
82 Ramachandran V S. Cement & Concrete Research, 1976. 6(5), 623.
83 Zhang Y R, Kong X M, Lu Z C, et al. Cement and Concrete Research, 2016, 87, 64.
84 Dodson V H. Concrete admixtures, Van Norstrand Reinhold, New York, 1990, pp. 92.
85 Huang H, Shen X, Zheng J. Construction and Building Materials, 2010, 24(10), 1937.
86 Perez J P, Nonat A, Garrault-Gauffinet S, et al. In: Proceedings of the 11th International Congress on the Chemistry of Cement. Delban, 2003, pp.454.
87 Huang Z J, Yuan X Y, Shao H Y. Journal of Shenyang Normal University (Natural Science Edition), 2012, 30(2), 265 (in Chinese).
黄志金, 袁晓燕, 邵华岳. 沈阳师范大学学报(自然科学版), 2012, 30(2), 265.
88 Sandberg P J, Doncaster F. Cement and Concrete Research, 2004, 34(6), 973.
89 Cheung J, Jeknavorian A, Roberts L, et al. Cement & Concrete Research, 2011, 41(12), 1289.
90 Li G H. Preparation of DEIPA and EDIPA and their effect on cement properties. Master's Thesis, Nanjing University of Technology, China, 2011 (in Chinese).
李国华. DEIPA、EDIPA的合成及对水泥性能的影响. 硕士学位论文, 南京理工大学, 2011.
91 Riding K, Silva D A. Scrivener K. Cement and Concrete Research, 2010, 40(6), 935.
92 Ma S H, Li W F, Zhang S B, et al. Cement and Concrete Research, 2015, 67, 122.
93 Riding K, Silva D A, Scrivener K. Cement and Concrete Research, 2010, 40(6), 935.
94 Zhu W J. Sichuan Cement, 2018(2), 6 (in Chinese).
朱伟杰. 四川水泥. 2018(2), 6.
95 Lu X L, Wang S X, Ye Z M, et al. Journal of Thermal Analysis and Calorimetry, 2020, 139(2), 1007.
96 Lu X L, Ye Z M, Zhang L N, et al. Construction and Building Materials, 2017, 135, 484.
97 Young J F. Cement and Concrete Research, 1972, 2(4), 415.
98 Wang P M. Journal of Shanghai Institufe of Building Malaterials, 1994, 7(2), 107 (in Chinese).
王培铭. 上海建材学院学报, 1994, 7(2), 107.
99 Thomas N L, Birchall J D. Cement and Concrete Research, 1983, 13(6), 830.
100 Wu J G, Wang P M. Journal of the Chinese Ceramic Society, 1998, 26(2), 164 (in Chinese).
吴建国, 王培铭. 硅酸盐学报, 1998, 26(2), 164.
101 Shen W G, Zhou M K. Journal of Building Materials, 2007(5), 566 (in Chinese).
沈卫国, 周明凯. 建筑材料学报, 2007(5), 566.
102 Zhuang X F. The effect of adjustable solidification agent on cement hydration induction period. Master's Thesis, Beijing University of Technology, China, 2017 (in Chinese).
庞晓凡. 调凝剂对水泥水化诱导期影响的研究. 硕士学位论文, 北京工业大学, 2017.
103 Wang S, Wang S, Liu B, et al. Journal of Thermal Analysis and Calorimetry, 2018, 131(3), 2337.
104 Heikal M. Cement and Concrete Research, 2003, 34(6), 1051.
105 Li B. Journal of Liaoning Provincial College of Communications, 2000, 2(3), 41 (in Chinese).
李彪. 辽宁省交通高等专科学校学报, 2000, 2(3), 41.
106 Shao Y Q. Journal of the Staff and Worker's University, 2001, 12(2), 51 (in Chinese).
邵玉琴. 职大学报, 2001, 12(2), 51.
107 Burak F. Construction and Building Materials, 2011, 28(1), 305.
108 Son S W, Yeon J H. Construction and Building Materials, 2012, 37, 669.
109 Tian L A. Cement Engineering, 2011, 36(1), 2 (in Chinese).
田立安. 水泥工程, 2011, 36(1), 2.
110 Shi L. China Building Materials Science & Technology, 2019, 28(4), 26 (in Chinese).
石林. 中国建材科技, 2019, 28(4), 26.
111 Cheng Y Y. Building Decoration Materials World, 2018(11), 50 (in Chinese).
成燕燕. 混凝土世界, 2018(11), 50.
112 Zhang F, Bai Y, Cai Y B, et al. Journal of Tongji University(Natural Science), 2019, 47(11), 1609 (in Chinese).
张丰, 白银, 蔡跃波, 等. 同济大学学报(自然科学版), 2019, 47(11), 1609.
113 Zou F B, Hu C L, Wang F Z, et al. Journal of Cleaner Production, 2020, 244, 118566.
114 Liu C Y, Ren G S, Gao X J. Bulletin of the Chinese Ceramic Society, 2020, 39(12), 3806 (in Chinese).
刘春英, 任国盛, 高小建. 硅酸盐通报, 2020, 39(12), 3806.
115 Zhang M S. Advanced Materials Research, 2012, 1896, 2483.
116 Xu Z Z, Zhou P Y, Fan R B, et al. New Building Materials, 2019, 46(2), 57 (in Chinese).
徐忠洲, 周普玉, 范瑞波, 等. 新型建筑材料, 2019, 46(2), 57.
117 Wang L X, Fan R B, Xu Z Z, et al. New Building Materials, 2019, 46(12), 66 (in Chinese).
王丽秀, 范瑞波, 徐忠洲, 等. 新型建筑材料, 2019, 46(12), 66.
118 Tang X S, Huang G H, Zhu Y R, et al. New Building Materials, 2013, 40(5), 11 (in Chinese).
唐修生, 黄国泓, 祝烨然, 等. 新型建筑材料, 2013, 40(5), 11.
119 Chen Y P, Yang T X, Song D S, et al. New Building Materials, 2013, 40(2), 9 (in Chinese).
陈亚萍, 杨廷雄, 宋冬生, 等. 新型建筑材料, 2013, 40(2), 9.
120 Wang W, Li Y N. Development Guide to Building Materials, 2019, 17(4), 93 (in Chinese).
王薇, 李亚楠. 建材发展导向, 2019, 17(4), 93.
121 Sun J F, Shi H, Qian B B, et al. Construction and Building Materials, 2017, 140, 282.
122 Nicoleau L. Zkg International, 2013, 1(1), 40.
123 Kanchanason V, Plank J. Construction and Building Materials, 2018, 169, 20.
124 Liu J H, Song S M, Gao X, et al. Journal of Building Materials, 2013, 16(3), 410 (in Chinese).
刘娟红, 宋少民, 高霞, 等. 建筑材料学报, 2013, 16(3), 410.
125 Du R R, Zhang X, Gu M D, et al. Materials Reports, 2019, 33(14), 2461 (in Chinese).
都蓉蓉, 张雄, 顾明东, 等. 材料导报, 2019, 33(14), 2461.
126 Xia Z Y, Huang C, Zhu P L, et al. New Building Materials, 2016, 43(12), 46(in Chinese).
夏贞勇, 黄成, 朱蓬莱, 等. 新型建筑材料, 2016, 43(12), 46.
127 Liu J, Chen X, Zhang P, et al. Ready-mixed Concrete, 2019(6), 33 (in Chinese).
刘军, 陈旭, 张平, 等. 商品混凝土, 2019(6), 33.
[1] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[2] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[3] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[4] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[5] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[6] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[7] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[8] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[9] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[10] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[11] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[12] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[13] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[14] 彭晶晶, 刘静, 张弦, 成林, 吴开明, 张涛. 合金元素在Al基牺牲阳极中的作用机理[J]. 材料导报, 2022, 36(17): 20090294-8.
[15] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed