Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21120077-9    https://doi.org/10.11896/cldb.21120077
  无机非金属及其复合材料 |
荷载作用下开裂混凝土中多离子传输的数值研究
胡哲1, 刘清风1,2,*
1 上海交通大学船舶海洋与建筑工程学院,海洋工程国家重点实验室,上海 200240
2 上海市公共建筑和基础设施数字化运维重点实验室,上海 200240
Numerical Study of Multi-species Transport in Cracked Concrete Under External Load
HU Zhe1, LIU Qingfeng1,2,*
1 State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 4834KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 临海地区的混凝土结构因氯离子侵蚀会导致严重的耐久性问题,尤其是在同时承受荷载作用的情况下。服役中的混凝土往往存在初始缺陷,荷载的持续作用会使得混凝土内部的孔隙结构进一步粗化并引起开裂,进而加剧氯盐侵蚀。同时,混凝土孔隙液中存在的多种离子也会影响到氯离子的传输。为了深入研究荷载-氯盐影响下的混凝土结构耐久性劣化,本工作针对前述机理开展多相数值研究,通过全面考虑荷载引起的混凝土开裂和孔隙损伤,以及异种离子间的电化学耦合效应的共同影响,提出了经过第三方试验验证的荷载-多离子传输耦合模型。研究发现,荷载大小和荷载施加方式的改变不仅会影响孔隙结构和裂缝形态,也会使静电势的分布产生差异,进而共同影响离子浓度的变化。荷载作用下的多离子电化学耦合效应会显著影响离子的传输规律,仅考虑单一离子会导致氯离子摄入量的预测偏低。荷载的作用同时还会放大环境条件(如盐溶液浓度)对氯传输的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡哲
刘清风
关键词:  荷载  氯离子  开裂  多离子传输  孔隙率  数值模型    
Abstract: Reinforced concrete structures, especially those under service load, are suffering from severe durability problems in coastal areas. Because of the action of external load, initial flaws pre-existed in concrete will continuously propagate into macro cracks, which will in turn aggravate chloride attack and lead to durability degradations. Besides, the presence of various ionic species in concrete pore solution can also affect the chloride transport behavior. In order to investigate the concrete durability deterioration under the combined action of external loading and chloride ingress, a numerical study was carried out to fundamentally disclose the underlying mechanisms. The influence of concrete cracking and pore structure damage was essentially quantified, and the electrochemical coupling effects caused by various ionic species were also considered. The validity of the proposed numerical model was benchmarked with a third-party experiment at length. Results show that both loading magnitude and mode will not only influence pore structure and cracking morphology, but also differentiate electrostatic potential distribution compared to sound concrete. Electrochemical coupling effect under external loading significantly affects the ionic transport behaviors, and single-ionic assumption will underestimate chloride concentration. Moreover, the influence of environmental factors like external chloride concentration will also be amplified due to external loading.
Key words:  loading    chloride    cracking    multi-species transport    porosity    numerical model
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51978396);上海市“青年科技启明星计划”(19QA1404700);上海交通大学深蓝计划(SL2021MS016)
通讯作者:  *刘清风,上海交通大学船舶海洋与建筑工程学院教授、博士研究生导师。国家优秀青年科学基金获得者、RILEM古斯塔沃·科洛内蒂奖章获得者、中国硅酸盐学会青年科技奖获得者,曾入选中国科协青年人才托举计划等。兼任国际材料与结构研究联合会(RILEM)、国际结构混凝土学会(FIB)、英国土木工程学会(ICE)、中国硅酸盐学会、中国建筑学会、中国大坝工程学会等12家学术组织的专家委员/理事。长期致力于混凝土结构耐久性研究,在多离子传输机制、细微观数值表征、电化学修复技术、既有结构寿命预测、纳米材料改性机理等研究方向上取得多项成果,发表论文90余篇,被SCI引用2 800余次,H-index为33,入选斯坦福大学全球前2%顶尖科学家榜单。主持国家和省部级纵向课题16项,入选国家和省部级人才计划5项。liuqf@sjtu.edu.cn   
作者简介:  胡哲,于郑州大学获学士学位,上海交通大学船舶海洋与建筑工程学院硕士研究生,在刘清风教授的指导下开展研究。主要研究方向为荷载作用下混凝土耐久性研究以及数值方法和机器学习技术在其中的应用。
引用本文:    
胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
HU Zhe, LIU Qingfeng. Numerical Study of Multi-species Transport in Cracked Concrete Under External Load. Materials Reports, 2023, 37(9): 21120077-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120077  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21120077
1 Liu Q F, Iqbal M, Yang J, et al. Construction and Building Materials, 2021, 268, 121082.
2 Zhang C L, Liu Q F. Materials Reports, 2022(1), 69 (in Chinese).
张成琳, 刘清风. 材料导报, 2022(1), 69.
3 Li L J, Liu Q F. Journal of the Chinese Ceramic Society, 2022, 50(8), 2245 (in Chinese).
李林洁, 刘清风. 硅酸盐学报, 2022, 50(8), 2245.
4 Liu Z Y, Lyu Y G, Zhou X G, et al. Industrial Construction, 2005(10), 50 (in Chinese).
刘志勇, 吕永高, 周新刚, 等. 工业建筑, 2005(10), 50.
5 Du X L, Jin L, Zhang R B. Journal of Building Structures, 2016, 37(1), 107 (in Chinese).
杜修力, 金浏, 张仁波. 建筑结构学报, 2016, 37(1), 107.
6 Jin L, Du X L, Zhang R B. Engineering Mechanics, 2015, 32(6), 33 (in Chinese).
金浏, 杜修力, 张仁波. 工程力学, 2015, 32(6), 33.
7 Jin W, Yan Y, Wang H. Journal of the Chinese Ceramic Society, 2010, 11, 134.
8 Ma K L, Wang Z Z. Materials Reports, 2021, 35(19), 19091 (in Chinese).
马昆林, 王中志. 材料导报, 2021, 35(19), 19091.
9 Bao J, Wang L. Construction and Building Materials, 2017, 156, 708.
10 Yao Y, Wang L, Wittmann F H, et al. Materials and Structures/Mate-riaux et Constructions, 2017, 50(2).
11 Yao Y, Wang L, Wittmann F H, et al. Materials and Structures, 2016, 50(2), 123.
12 Yin S H, Guo G F, Zhang E M, et al. Journal of South China University of Technology(Natural Science Edition) 2013, 41(6), 133(in Chinese).
殷素红, 郭高峰, 张二猛, 等. 华南理工大学学报(自然科学版) 2013, 41(6), 133.
13 Guan B W, Yang T, Wu J Y, et al. Journal of Building Materials, 2018, 21(2), 304 (in Chinese).
关博文, 杨涛, 吴佳育, 等. 建筑材料学报, 2018, 21(2), 304.
14 Zou B, Zhan S L. Bulletin of the Chinese Ceramic Society, 2017, 36(8), 2519 (in Chinese).
邹斌, 詹树林. 硅酸盐通报, 2017, 36(8), 2519.
15 Yu X R, Yao G W, Materials Reports, 2021, 35(20), 20087 (in Chinese).
喻宣瑞, 姚国文. 材料导报, 2021, 35(20), 20087.
16 Qin X C, Liu J P, Shi L, et al. Materials Reports, 2020, 34(3), 3106 (in Chinese).
秦晓川, 刘加平, 石亮, 等. 材料导报, 2020, 34(3), 3106.
17 Zhang R, Jin L, Liu M, et al. Magazine of Concrete Research, 2017, 69(16), 850.
18 Ismail M, Toumi A, François R, et al. Cement and Concrete Research, 2008, 38(8), 1106.
19 Bentz D P, Garboczi E J, Lu Y, et al. Cement and Concrete Composites, 2013, 38, 65.
20 Jin L, Zhang R B, Du X. Engineering Mechanics, 2017, 34(3), 84 (in Chinese).
金浏, 张仁波, 杜修力. 工程力学, 2017, 34(3), 84.
21 Du X L, Jin L, Zhang R B. Journal of Building Materials, 2016, 19(1), 65 (in Chinese).
杜修力, 金浏, 张仁波. 建筑材料学报, 2016, 19(1), 65.
22 Šavija B, Pacheco J, Schlangen E. Cement and Concrete Composites, 2013, 42, 30.
23 Šavija B, Luković M, Schlangen E. Cement and Concrete Research, 2014, 61-62, 49.
24 Li W, Guo L. Construction and Building Materials, 2020, 241, 118021.
25 Liu Q F, Hu Z, Wang X E, et al. Construction and Building Materials, 2022, 325, 126797.
26 Ye Q J, Yu J, Gong X N, Materials Reports, 2014, 28(S2), 327 (in Chinese).
叶启军, 喻军, 龚晓南. 材料导报, 2014, 28(S2), 327.
27 Wu L Q, Zhang X Y, Jiang L H, et al, Materials Reports, 2015, 29(17), 106 (in Chinese).
武利强, 章晓桦, 蒋林华, 等. 材料导报, 2015, 29(17), 106.
28 Tong L Y, Xiong Q X, Zhang M, et al. Construction and Building Materials, 2023, 367, 130096.
29 Meng Z, Liu Q F, Xia J, et al. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 1854.
30 Hansen T C. Materials and Structures, 1986, 19(6), 423.
31 Zheng J, Zhou X. Journal of Materials in Civil Engineering, 2008, 20(5), 384.
32 Xiong Q, Wang X, Jivkov A P. Cement and Concrete Composites, 2020, 109, 103545.
33 Meng Z, Liu Q F, She W, et al. Engineering Structures, 2021, 246, 112903.
34 Jiang F X, Xin L, Zhao T J. Advanced Materials Research, 2011, 261-263, 1210.
35 Du X, Jin L, Zhang R. Ocean Engineering, 2015, 95, 1.
36 Lian C, Zhuge Y. Construction and Building Materials, 2011, 25(11), 4294.
37 Murphy B, Prendergast P. Journal of Biomedical Materials Research, 2002, 59(4), 646.
38 Rice RW. Mechanical properties of ceramics and composites:grain and particle effects, CRC Press, US, 2000.
39 Chen X, Wu S, Zhou J. Construction and Building Materials, 2013, 40, 869.
40 Masi M, Colella D, Radaell G, et. al. Cement and Concrete Research, 1997, 27(10), 1591.
41 Kumar S, Barai S V. Concrete Fracture Models and Applications, 2011, 1, 258.
42 Mao L X, Hu Z, Xia J, et al. Composite Structures, 2019, 207, 176.
43 Guo B, Qiao G, Li Z, et al. Journal of Building Engineering, 2021, 44, 102943.
44 Jiang W Q, Shen X H, Hong S, et al. Ocean Engineering, 2019, 186, 106093.
45 Chen W K, Liu Q F. Journal of Hydraulic Engineering, 2021, 52(5), 622(in Chinese).
陈伟康, 刘清风. 水利学报, 2021, 52(5), 622.
46 Liu Q F, Feng G L, Xia J, et al. Composite Structures, 2018, 183, 371.
47 Li L Y, Xia J, Lin S S. Construction and Building Materials, 2012, 26(1), 295.
48 Cai Y X, Liu Q F, Yu L, et al. Cement and Concrete Composites, 2021, 122, 104153.
49 Liu Q F, Yang J, Xia J, et al. Computational Materials Science, 2015, 99, 396.
50 Shafikhani M, Chidiac S E. Cement and Concrete Research, 2020, 133, 106049.
51 Wang P, Wittmann F H, Lu W, et al. Key Engineering Materials, 2016, 711, 638.
52 Liu Q F, Shen X H, Šavija B, et al. Cement and Concrete Research, 2023, 165, 107072.
53 Li L J, Liu Q F, Tang L P, et al. Construction and Building Materials, 2021, 302, 124291.
54 Huang L K. Journal of Chongqing University of Technology(Natural Science), 2022, 36(2), 101(in Chinese).
黄兰可. 重庆理工大学学报(自然科学), 2022, 36(2), 101.
55 Yan Y F, Li F Y. Journal of Chongqing University of Technology(Natural Science), 2021, 35(6), 104(in Chinese).
严宇飞, 李方义. 重庆理工大学学报(自然科学), 2021, 35(6), 104.
[1] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[2] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[3] 张超, 方胜, 黄伟, 赖志超, 陈添平. 混凝土环形收缩试验的研究进展[J]. 材料导报, 2023, 37(4): 21010051-10.
[4] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[5] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[6] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[7] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[8] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[9] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[10] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[11] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[12] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[13] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[14] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[15] 王鹏刚, 付华, 郭腾飞, 田砾, 赵铁军. 蒸汽养护混凝土变形行为及开裂风险评估[J]. 材料导报, 2022, 36(24): 20120185-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed