Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21030054-6    https://doi.org/10.11896/cldb.21030054
  无机非金属及其复合材料 |
水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法
余波1,2,3, 黄俊铭1, 卢金马1, 杨绿峰1,2,3,*
1 广西大学土木建筑工程学院,南宁 530004
2 工程防灾与结构安全教育部重点实验室,南宁 530004
3 广西防灾减灾与工程安全重点实验室,南宁 530004
Accelerated Test Device and Method for Critical Chloride Content of Steel Depassivation in Cement-based Materials
YU Bo1,2,3, HUANG Junming1, LU Jinma1, YANG Lufeng1,2,3,*
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Nanning 530004, China
3 Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning 530004, China
下载:  全 文 ( PDF ) ( 12525KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作结合氯离子电迁移系统和电化学测试系统,研发了一种新型的水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置,分别测试了混凝土和砂浆中钢筋脱钝过程的开路电位、极化电阻和腐蚀电流密度的变化规律,提出了水泥基材料中钢筋脱钝的量化判别方法,并测试了混凝土和砂浆中钢筋脱钝的临界氯离子浓度。分析结果表明,利用所研发的临界氯离子测试装置不仅可以通过电迁移方式加速氯离子在水泥基材料中的传输、缩短试验测试周期,而且能够通过量化判别准则判别试件中钢筋测试端面是否发生脱钝,避免传统测试方法采用钢筋环面作为测试工作面、根据腐蚀电化学参数的特定取值或变化规律定性判断钢筋是否脱钝造成的测试误差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余波
黄俊铭
卢金马
杨绿峰
关键词:  水泥基材料  钢筋脱钝  临界氯离子浓度  测试装置  量化判别准则    
Abstract: Anew accelerated test device for critical chloride content of steel depassivation in cement-based materials was developed based on chloride migration system and electrochemical test system. Variations of open-circuit potential, polarization resistance and corrosion current density during steel depassivation process in concrete and mortar were tested. Meanwhile, the quantitative discriminant criterion of steel despassivation was proposed. Moreover, the critical chloride contents of steel despassivation in concrete and mortar were tested. Analysis results show that the invented test device and test method for critical chloride content can not only accelerate the chloride transport process in cement-based materials by electromigration to shorten the test time, but also quantitatively determine whether steel despassivation occurs of end test face, avoiding the test error caused by the traditional test method,which qualitatively judges whether the steel despassivation occurs of surrounding test face according to the specific values or variations of corrosion electrochemical parameters.
Key words:  cement-based material    steel despassivation    critical chloride content    test device    quantitative discriminant criterion
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(52278162;62266005;51738004);广西杰出青年科学基金(2019GXNSFFA245004);广西自然科学基金(2018GXNSFAA281344);广西研究生教育创新计划资助项目(YCSW2021026)
通讯作者:  *lfyang@gxu.edu.cn,杨绿峰,广西大学土木建筑工程学院教授、博士研究生导师。1998年在武汉工业大学取得结构工程专业博士学位,主要从事混凝土结构耐久性、工程结构承载力设计与优化以及结构可靠度与体系可靠度的研究,在国内外期刊发表学术论文220多篇,其中被SCI收录30余篇,EI收录130余篇。   
作者简介:  余波,广西大学土木建筑工程学院教授、博士研究生导师。2011年取得广西大学结构工程博士学位,主要从事混凝土结构耐久性定量分析与设计、混凝土结构性能劣化机制与安全评估以及工程结构随机分析与风险评估等方面研究,在国内外期刊发表学术论文150多篇,其中被SCI收录40多篇,EI收录50多篇。
引用本文:    
余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
YU Bo, HUANG Junming, LU Jinma, YANG Lufeng. Accelerated Test Device and Method for Critical Chloride Content of Steel Depassivation in Cement-based Materials. Materials Reports, 2023, 37(3): 21030054-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030054  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21030054
1 Thomas M.Cement and Concrete Research, 1996, 26(4), 513.
2 Mohammed T, Hamada H. ACI Materials Journal, 2006, 103, 233.
3 Song X B, Kong Q M, Liu X L.China Civil Engineering Journal, 2007, 40(11), 59(in Chinese).
宋晓冰, 孔启明, 刘西拉. 土木工程学报, 2007, 40(11), 59.
4 Alonso C, Andrade C, Castellote M, et al. Cement and Concrete Research, 2000, 30(7),1047.
5 Oh B H, Jang S Y, Shin Y S. Magazine of Concrete Research, 2003, 55(2), 117.
6 Gan W Z, Jin W L, Gao M Z. Journal of Building Materials, 2011, 32(2), 41(in Chinese).
干伟忠, 金伟良, 高明赞. 建筑结构学报, 2011, 32(2), 41.
7 Wang Y Z, Liu C X, Wang Y C, et al.Construction and Building Mate-rials, 2019, 214, 158.
8 Shi J J, Sun W.Journal of Southeast University (Natural Science Edition), 2011, 41(5), 1042(in Chinese).
施锦杰, 孙伟.东南大学学报(自然科学版), 2011, 41(5), 1042.
9 Fakhri H, Fishman K L, Ranade R.Construction and Building Materials, 2021, 268, 121.
10 Millard S G, Law D, Bungey J H, et al. Ndt & E International, 2001, 34 (6),409.
11 Da B, Yu H F, Ma H Y, et al. Materials Reports B:Research Papers, 2019, 33(6), 2002 (in Chinese).
达波, 余红发, 麻海燕,等. 材料导报:研究篇, 2019, 33(6), 2002.
12 Niu D T, Sun Z, Zhang L, et al. Journal of Building Materials, 2021, 24(5), 977 (in Chinese).
牛荻涛, 孙振, 张路, 等. 建筑材料学报, 2021, 24(5), 977.
13 Zuo X B, Li X N, Liu Z Y, et al.Construction and Building Materials, 2019, 229, 116907.
14 Zheng H B, Dai J G, Li W H, et al.Construction and Building Materials, 2018, 166, 572.
15 Shang B H, Ma Y T, Meng M J.Materials and Corrosion, 2018, 69(12), 1800.
16 Liu G J, Zhang Y S, Ni Z W.Construction and Building Materials, 2016, 115,1.
17 Chen Z, Yang L F, Zeng J C.New Building Materials, 2010, 37(10), 73(in Chinese).
陈正, 杨绿峰, 曾建聪.新型建筑材料, 2010, 37(10), 73.
[1] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[2] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[3] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[4] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[5] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[6] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[7] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[8] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[9] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[10] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[11] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[12] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[13] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[14] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[15] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed