Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20070147-7    https://doi.org/10.11896/cldb.20070147
  无机非金属及其复合材料 |
光镊技术进展及其在水泥基材料中的应用展望
周玥1, 朱哲誉1, 徐玲琳1,2, 王中平1,2, 周龙1
1 同济大学材料科学与工程学院,上海 201804
2 同济大学先进土木工程材料教育部重点实验室,上海 201804
Recent Advances of Optical Tweezers and Its Prospect in Application of Cement-based Materials
ZHOU Yue1, ZHU Zheyu1, XU Linglin1,2, WANG Zhongping1,2, ZHOU Long1
1 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
2 Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 3435KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受限于传统表征方法的能力,在建立硅酸盐水泥最主要的水化产物——水化硅酸钙(C-S-H)理论模型时获取的化学组成、结构参数等信息多是基于水泥颗粒群的测试结果。由于C-S-H的组成和结构极易受水化环境影响,C-S-H结构和组成的量化研究有待进一步优化。
光镊技术作为一种可实现微小粒子无损捕获的技术,已被用于多个领域的单颗粒研究。将光镊技术引入水泥基材料领域,观测单个水泥颗粒的水化,有利于实现其水化条件的精准控制,降低不同颗粒间的相互影响。利用光镊技术从微米和纳米尺度直接获取C-S-H的形貌特征、化学组成及结构参数等信息,为进一步优化C-S-H纳米结构模型提供理论依据。按照捕获精度的不同,光镊技术经历了三个主要发展阶段:(1)常规远场光镊。多适用于捕获微米级粒子。其捕获对象以生物细胞为主,逐渐向有机和无机材料领域拓展。(2)近场光镊。利用近场光学的倏逝场,突破了传统衍射极限限制,实现了微米及亚微米尺度粒子的捕获。(3)纳米孔径光镊。主要基于自诱导反作用力(SIBA)效应,使得捕获精度提升至纳米尺度,降低了激光功率,减小了热损伤,丰富了光镊技术可操控的对象。目前三种光镊技术的捕获介质满足液体、气体与真空环境,捕获对象包含有机粒子、无机粒子和金属粒子等,理论上可满足各领域的研究要求。
光镊技术能否捕获微粒与激光波长、光束功率、捕获介质、微粒性质等诸多因素相关。微粒性质主要与其折射率有关,折射率越大越有利于产生拉力,即梯度力。本文统计了已经实现捕获的部分微粒的性质,其物质折射率涵盖0.30~2.86。对水泥颗粒而言,其折射率在1.7左右,静止空气的捕获介质不会影响水泥水化,毫瓦级的捕获功率不足以损伤水泥颗粒,因此理论上可实现稳定捕获。
本文综述了光镊技术的研究现状,重点探讨了其应用对象、操作环境以及操作精度的异同,提出了光镊技术在水泥基材料中的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周玥
朱哲誉
徐玲琳
王中平
周龙
关键词:  水泥基材料  水化硅酸钙(C-S-H)  光镊技术  纳米孔径光镊    
Abstract: Calcium silicate hydrate (C-S-H), as the main hydration product of Portland cement, is limited by the ability of traditional characterization methods when establishing theoretical models. However, the information, which is used to establish the theoretical model like chemical composition and structural parameters, is based on the results of cement particle groups. Since the composition and structure of C-S-H are susceptible to the change of hydration condition, the average results need to be further optimized to accurately explain C-S-H.
Optical tweezers technologyhave been used in single particle research of many fields, because it can capture small particles nondestructively. Introducing optical tweezers into the research of cement-based materials can manipulate the individual cement particle and observe its hydration, which is beneficial to achieving the precise control of cement hydration conditions and reducing the interaction effect between different particles. By using optical tweezers, morphological characteristics, composition and structure of C-S-H at the micro-nano scale can be directly explored under specific hydration conditions. This is of significance for establishing a theoretical model of C-S-H which is closer to the actual system.Optical tweezers have gone through three main development stages according to the difference of capture accuracy as follow: (i) Far-field optical tweezers are more suitable for capturing micron-sized particles. The capture objects mainly include microbial cells and gradually expand the field of organic and inorganic materials. (ii) Near-field optical tweezers are suitable for capturing micron and sub-micron particles. They break through the classical optical diffraction limit through the evanescent field of near field optics. (iii) Nano-aperture optical tweezers are based on the self-induced back-action (SIBA) effect, which increases the capture accuracy of optical tweezers to nanoscale. Nano-aperture optical tweezers can reduce the laser power, decrease the thermal damage and enrich the capture objects. At present, the capture medium of the three optical tweezers includes liquid, gas and vacuum, while the capture objects extend to organic particles, inorganic particles and metal particles, making it applied to the particles in various fields in theory.
The parameters of optical tweezers to capture particles include many factors such as laser wavelength, beam power, capture medium and particle properties. For the particle, capture is mainly related to its refractive index. The larger the refractive index is, the more helpful it is to produce “pull force”(gradient force). This paper counts the properties of some particles that have been captured, and the refractive index ranges from 0.30 to 2.86. For cement particles, the refractive index is about 1.7. The capture medium of air will not affect cement hydration, and the laser power for capture is at milliwatt level which is not enough to damage the cement particles. Thus it is realizable to achieve the capture of cement particles stably.
This paper reviews the research about optical tweezers. Their application objects, capture medium and capture accuracy are focused, and the application of optical tweezers in cement-based materials is explored.
Key words:  cement-based materials    calcium silicate hydrate(C-S-H)    optical tweezers technology    nano-aperture optical tweezers
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TU525  
基金资助: 国家自然科学基金(51772212)
通讯作者:  xulinglin@126.com   
作者简介:  周玥,2017年6月毕业于中国矿业大学,获得工学学士学位。现为同济大学材料科学与工程学院博士研究生,在王中平教授的指导下进行研究。目前主要研究领域为水泥基材料的组成与结构。
徐玲琳,同济大学材料科学与工程学院副教授。2013年6月博士毕业于同济大学材料科学与工程学院。2013年9月进入同济大学博士后流动站工作。2014年10月至2015年10月获中德博士后奖学金资助赴德国包豪斯大学开展博士后研究,2015年12月进入同济大学材料科学与工程学院工作。2015年入选同济大学青年优秀人才培养行动计划,先后主持国家自然科学基金项目、硅酸盐建筑材料国家重点实验室开放基金重点项目、先进土木工程材料教育部重点实验室项目等科研项目,并作为主要研究者参与“十一五”“十二五”科技支撑项目和国家自然科学基金等国家级项目的研究工作,在Cement and Concrete ResearchCement and Concrete CompositesConstruction and Building Materials和《硅酸盐学报》等国内外学术期刊发表论文20余篇。
引用本文:    
周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
ZHOU Yue, ZHU Zheyu, XU Linglin, WANG Zhongping, ZHOU Long. Recent Advances of Optical Tweezers and Its Prospect in Application of Cement-based Materials. Materials Reports, 2022, 36(8): 20070147-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070147  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20070147
1 Allen A J, Thomas J J, Jennings H M. Nature Materials,2007,6(4),311.
2 Dao M, Lim C T, Suresh S. Journal of the Mechanics and Physics of Solids,2003,51(11-12),2259.
3 Zhu J, Sun R G. Laser Journal,2005,26(6),91(in Chinese).
朱杰,孙润广.激光杂志,2005,26(6),91.
4 Shiddiq M, Nasir Z, Yogasari D. AIP Conference Proceedings,2013,1555(1),24.
5 Wu J G. Research of mechanical property of biological cell utilizing optical tweezers. Ph.D. Thesis, University of Science and Technology of China, China,2009(in Chinese).
吴建光.利用光镊研究生物细胞的力学行为.博士学位论文,中国科学技术大学,2009.
6 Ashkin A. Physical Review Letters,1970,24(4),156.
7 Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Optics Letters,1986,11(5),288.
8 Ashkin A, Dziedzic J M. Science,1987,235(4795),1517.
9 Li Y M, Gong L, Li D, et al. Chinese Journal of Lasers,2015,42(1),0101001(in Chinese).
李银妹,龚雷,李迪,等.中国激光,2015,42(1),0101001.
10 Chen G X, Zhou J H, Ren Y X, et al. Laser and Optoelectronics Progress,2009,46(6),32(in Chinese).
陈冠雄,周金华,任煜轩,等.激光与光电子学进展,2009,46(6),32.
11 Nieminen T A, Knöner G, Heckenberg N R, et al. Methods in Cell Biology,2007,82,207.
12 Gao H Y, Yu D N. Acta Biophysica Sinica,2012,28(3),212(in Chinese).
郜洪宇,于丹妮.生物物理学报,2012,28(3),212.
13 Moffitt J R, Chemla Y R, Smith S B, et al. Annual Review of Biochemistry,2008,77,205.
14 Li Y M. Physics Experimentation,2003,23(1),13(in Chinese).
李银妹.物理实验,2003,23(1),13.
15 Li B J, Xin H B, Zhang Y, et al. Acta Optica Sinica,2011,31(9),224(in Chinese).
李宝军,辛洪宝,张垚,等.光学学报,2011,31(9),224.
16 Zhang M. Transverse force of Rayleigh particles in the optical field. Master's Thesis, Shandong Normal University, China,2009(in Chinese).
张敏.光场中瑞利粒子的横向受力特性研究.硕士学位论文,山东师范大学,2009.
17 Wang M D, Yin H, Landick R, et al. Biophysical Journal,1997,72(3),1335.
18 Arai Y, Yasuda R, Akashi K, et al. Nature,1999,399(6735),446.
19 Polimeno P, Magazzù A, Iatì M A, et al. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,218,131.
20 Peters K C. Optical tweezer trapping of colloidal polystyrene and silica microspheres. Bachelor's Thesis, Oregon State University, USA,2013.
21 Sasaki K, Koshioka M, Misawa H, et al. Applied Physics Letters,1992,60(7),807.
22 Gu M, Morrish D, Ke P C. Applied Physics Letters,2000,77(1),34.
23 Hu K Y, Xiao G Z, Zhang Y, et al. Chinese Optics,2017,10(3),370(in Chinese).
胡孔云,肖光宗,张莹,等.中国光学,2017,10(3),370.
24 Liesener J, Reicherter M, Haist T, et al. Optics Communications,2000,185(1-3),77.
25 Plewa J, Tanner E, Mueth D M, et al. Optics Express,2004,12(9),1978.
26 Zhang Y L, Zhou Z H, Zhu L Q. Journal of Applied Optics,2016,37(6),804(in Chinese).
张玉灵,周哲海,祝连庆.应用光学,2016,37(6),804.
27 Wang K, Xing Q R, Mao F L, et al. Journal of Optoelectronics Laser,2005,16(12),1480(in Chinese).
王锴,邢岐荣,毛方林,等.光电子·激光,2005,16(12),1480.
28 Leitz G, Fallman E, Tuck S, et al. Biophysical Journal,2002,82(4),2224.
29 Grigorenko A N, Roberts N W, Dickinson M R, et al. Nature Photonics,2008,2(6),365.
30 Zheng Y X, Ryan J, Hansen P, et al. Nano Letters,2014,14(6),2971.
31 Omori R, Kobayashi T, Suzuki A. Optics Letters,1997,22(11),816.
32 Li S J, Huang X F. International Journal of Optomechatronics,2015,9(1),35.
33 Kheifets S, Li T, Medellin D, et al. In: Proceedings of the APS Texas Sections Spring Meeting Abstracts. Texas,2010,pp.18.
34 Huo X, Pan S, Wu S F. Optical Technique,2007,33(2),292(in Chinese).
霍鑫,潘石,吴世法.光学技术,2007,33(2),292.
35 Fan W K, Xu J Y, Wang J. Laser and Optoelectronics Progress,2007,44(7),40(in Chinese).
范伟康,许吉英,王佳.激光与光电子学进展,2007,44(7),40.
36 Girard C, Dereux A. Reports on Progress in Physics,1996,59(5),657.
37 Nieto-Vesperinas M, Chaumet P C, Rahmani A. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2004,362(1817),719.
38 Novotny L, Bian R X, Xie X S. Physical Review Letters,1997,79(4),645.
39 Yan S B, Zhao Y, Yang D C, et al. Infrared and Laser Engineering,2015,44(3),1034(in Chinese).
闫树斌,赵宇,杨德超,等.红外与激光工程,2015,44(3),1034.
40 Betzig E, Trautman J K. Science,1992,257(5067),189.
41 Varghese S S, Gu M, Varghese S S, et al. Journal of Biophotonics,2010,3(4),207.
42 Soltani M, Lin J, Forties R A, et al. Nature Nanotechnology,2014,9(6),448.
43 Liu B H, Yang L J, Wang Y, et al. Optics Communications,2011,284(12),3039.
44 Deng Y. Science and Technology Information,2010(13),100(in Chinese).
邓燕.科技资讯,2010(13),100.
45 Schonbrun E, Abashin M, Blair J, et al. Optics Express,2007,15(13),8065.
46 Grepstad J O, Skaar J. Optics Express,2011,19(22),21404.
47 Kawata S, Sugiura T. Optics Letters,1992,17(11),772.
48 Garcés-Cháveza V, Dholakia K, Spalding G C. Applied Physics Letters,2005,86(3),031106.
49 Siler M, Sery M,Čižmár T, et al. In: Proceedings of SPIE-Proceedings of the Optical Trapping and Optical Micromanipulation II. Bellingham,2005,pp.59300R.
50 Ash E, Nicholls G. Nature,1972,237(5357),510.
51 Okamoto K, Kawata S. Physical Review Letters,1999,83(22),4534.
52 Liu B H, Yang L J, Wang Y. Optics and Precision Engineering,2011,19(10),2355(in Chinese).
刘炳辉,杨立军,王扬.光学 精密工程,2011,19(10),2355.
53 Kwak E S, Onuta T D, Amarie D, et al. Journal of Physical Chemistry B,2004,108(36),13607.
54 Mohammadnezhad M, Hassanzadeh A. Journal of the Optical Society of America B-Optical Physics,2017,34(5),983.
55 Gu M, Haumonte J B, Micheau Y, et al. Applied Physics Letters,2004,84(21),4236.
56 Neumann L, Pang Y, Houyou A, et al. Nano Letters,2011,11(2),355.
57 Shi X, Hesselink L. Journal of the Optical Society of America B-Optical Physics,2004,21(7),1305.
58 Chaumet P C, Rahmani A, Nieto-Vesperinas M. Physical Review Letters,2002,88(12),123601.
59 Milosevic M. Applied Spectroscopy,2013,67(2),126.
60 Chaumet P C, Rahmani A, De Fornel F, et al. Physical Review B,1998,58(4),2310.
61 Juan M L, Gordon R, Pang Y J, et al. Nature Physics,2009,5(12),915.
62 Neumeier L, Quidant R, Chang D E. New Journal of Physics,2015,17(12),123008.
63 Mestres P, Berthelot J, Acimovic S S, et al. Light: Science and Applications,2016,5(7),e16092.
64 Garcia-Vidal F J, Moreno E, Porto J A, et al. Physical Review Letters,2005,95(10),103901.
65 Garcia-Vidal F J, Martin-Moreno L, Moreno E, et al. Physical Review B,2006,74(15),153411.
66 De Abajo J G. Optics Express,2002,10(25),1475.
67 Pang Y J, Gordon R. Nano Letters,2011,11(9),3763.
68 Kotnala A, Gordon R. Nano Letters,2014,14(2),853.
69 Saleh A A E, Dionne J A. Nano Letters,2012,12(11),5581.
70 Berthelot J, Acimovic S S, Juan M L, et al. Nature Nanotechnology,2014,9(4),295.
71 Seniutinas G, Rosa L, Gervinskas G, et al. Beilstein Journal of Nanotechnology,2013,4(1),534.
72 Chen C, Juan M L, Li Y, et al. Nano Letters,2012,12(1),125.
73 Gao X. Investigation and application of micro characterization methods for cementitious materials. Ph.D. Thesis, Southeast University, China,2018(in Chinese).
高翔.水泥基材料微观表征技术的研究及应用.博士学位论文,东南大学,2018.
74 Oner A, Akyuz S, Yildiz R. Cement and Concrete Research,2005,35(6),1165.
75 Hou D S, Ma H Y, Yu Z, et al. Acta Materialia,2014,67,81.
76 Zhao X G. Synthesis, composition, structure and morphology of calcium silicate hydrate. Master's Thesis, Wuhan University of Technology, China,2010(in Chinese).
赵晓刚.水化硅酸钙的合成及其组成,结构与形貌.硕士学位论文,武汉理工大学,2010.
77 Zhang X Z, Chang W Y, Zhang T J, et al. Journal of the American Ceramic Society,2000,83(10),2600.
78 Mohan K, Taylor H F W. Journal of the American Ceramic Society,1981,64(12),717.
79 Gard J A, Mohan K, Taylor H F W, et al. Journal of the American Ceramic Society,1980,63(5-6),336.
80 Guo S H, Lin Z, Su J H, et al. Journal of Chinese Ceramic Society,2000,28(Z1),16 (in Chinese).
郭随华,林震,苏姣华,等.硅酸盐学报,2000,28(Z1),16.
81 Zhou L. Study on the micro-nano scale structure and physical properties of C-S-H. Master's Thesis, Tongji University, China,2015(in Chinese).
周龙.C-S-H微纳尺度的结构和物理性能研究.硕士学位论文,同济大学,2015.
82 Wang Y Z, Zhao Q L, Zhou S Q. Bulletin of the Chinese Ceramic Society,2018,37(9),2817(in Chinese).
王亚洲,赵青林,周尚群.硅酸盐通报,2018,37(9),2817.
83 He Y J, Lv L N, Struble L J, et al. Materials and Structures,2014,47(1-2),311.
84 He Y J, Zhao X G, Lv L N, et al. Journal of Wuhan University of Technology (Materials Science Edition),2011,26(4),770.
85 Wang X. Drying shrinkage of hardened cement paste and its relationship to the microstructure. Master's Thesis, Chongqing University, China,2011(in Chinese).
王欣.水泥石的干燥收缩及其与微观结构的关系,硕士学位论文,重庆大学,2011.
86 Ye J Y, Lian C M, Zhang W S, et al. Current Nanoscience,2013,9(6),759.
87 Kang Z J. Study on drying shrinkage of hardened cement paste and its microscopic mechanism. Master's Thesis, Chongqing University, China,2007(in Chinese).
康志坚.水泥石的干燥收缩及其微观机理研究.硕士学位论,重庆大学,2007.
88 Escalante-Garcia J I, Sharp J H. Journal of the American Ceramic Society 2010,82(11),3237.
89 Gallucci E, Zhang X, Scrivener K L. Cement and Concrete Research,2013,53(2),185.
90 Paradiso P, Santos R L, Horta R B, et al. Acta Materialia,2018,152,7.
91 Bhat P A, Debnath N C. Journal of Physics and Chemistry of Solids,2011,72(8),920.
92 Papatzani S, Paine K, Calabria-Holley J. Construction and Building Materials,2015,74,219.
93 Jennings H M. Cement and Concrete Research,2000,30(1),101.
94 Jennings H M. Cement and Concrete Research,2008,38(3),275.
95 Liu X P, Aranda M A G, Chen B, et al. Crystal Growth and Design,2015,15(7),3087.
96 Xue G S. Research on photoresponse of azobenzene containing polymer vesicles with optical tweezer Raman spectrum. Ph.D. Thesis, University of Science and Technology of China, China,2013(in Chinese).
薛国胜.拉曼光镊表征偶氮聚合物囊泡光响应机理研究.博士学位论文,中国科学技术大学,2013.
97 Hoffmann A, Horste G M Z, Pilarczyk G, et al. Applied Physics B-Lasers and Optics,2000,71(5),747.
98 Pralle A, Florin E L, Stelzer E H K, et al. Single Molecules,2000,1(2),129.
99 Creely C M, Singh G P, Petrov D. Optics Communication,2005,245(1-6),465.
100 Ajito K, Torimitsu K. Applied Spectroscopy,2002,56(4),541.
101 Sasaki K, Koshioka M, Misawa H, et al. Applied Physics Letters,1992,60(7),807.
102 Gu M, Morrish D, Ke P C. Applied Physics Letters,2000,77(1),34.
103 Gu M, Haumonte J B, Micheau Y, et al. Applied Physics Letters,2004,84(21),4236.
104 Ploschner M,Čižmár T, Mazilu M, et al. Nano Letters,2012,12(4),1923.
105 Xu H T, Jones S, Choi B C, et al. Nano Letters,2016,16(4),2639.
[1] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[2] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[3] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[4] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[5] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[6] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[7] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[8] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[9] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[10] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[11] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[12] 于泳, 金祖权, 邵爽爽, 李哲. 蒸养过程中水泥基材料抗拉性能试验研究[J]. 材料导报, 2021, 35(14): 14052-14057.
[13] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[14] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[15] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed