Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14045-14051    https://doi.org/10.11896/cldb.20060298
  无机非金属及其复合材料 |
基于碳酸钙标记的水泥基材料裂缝自修复表征
陈沁文1,2,3, 苏依林1,2,3, 李敏1,2,3,*, 钱春香1,2,3,*
1 东南大学材料科学与工程学院,南京 211189
2 东南大学绿色建筑材料研究中心,南京 211189
3 东南大学中国建材行业微生物技术重点实验室,南京 211189
Characterization of Self-healing Cracks in Cement-based Materials Based on Labled Calcium Carbonate
CHEN Qinwen1,2,3, SU Yilin1,2,3, LI Min1,2,3,*, QIAN Chunxiang1,2,3,*
1 College of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Research Institute of Green Construction Materials, Southeast University, Nanjing 211189, China
3 Key Laboratory of Microbial Technology in Building Materials Industry, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 4111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为表征微生物自修复水泥基材料裂缝修复深度,提出两种微生物矿化产物碳酸钙的标记方法。一是吸附Cu2+法,通过生物碳酸钙吸附Cu2+在其表面形成碱式碳酸铜进行标记;二是掺杂Eu3+法,通过在生物碳酸钙中掺杂Eu3+形成具有发光性能的CaCO3:Eu3+进行标记。采用XRD对溶液和水泥基材料中标记前后的生物碳酸钙进行分析,再利用荧光激发和发射光谱对溶液和水泥基材料中掺杂Eu3+的生物碳酸钙进行分析,采用X射线计算机断层成像技术(X-CT)对两种方法标记后的水泥基材料进行表征。结果表明:在Cu2+浓度为12.5 mg/mL,温度为25 ℃,吸附3 h 的条件下,吸附Cu2+标记生物碳酸钙效果最好;在Eu3+掺量为2%,温度为45 ℃,掺杂48 h的条件下,掺杂Eu3+标记生物碳酸钙效果最好。两种方法对微生物自修复水泥基材料修复深度的评价结果均为3 mm,与热重分析检测结果趋于一致。吸附Cu2+和掺杂Eu3+的方式均能够标定修复产物,且能准确地表征水泥基材料的修复深度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈沁文
苏依林
李敏
钱春香
关键词:  生物碳酸钙  修复产物标定  离子掺杂  水泥基材料裂缝表征    
Abstract: In order to characterize the crack repair depth of mocrobial self-healing cement-based materials, two methods were proposed to characterize calcium carbonate, the mineralized product of microorganisms. One method was to adsorb Cu2+ by biological calcium carbonate and form basic copper carbonate mark on its surface. Another method was to label the mineralized products by doping Eu3+ to form CaCO3:Eu3+. XRD was used to analyze biocarbonate before and after labeling in solution and cement-based materials. Fluorescence excitation and emission spectroscopy were used to analyze the calcium carbonate doped with Eu3+. X-CT was used to characterize the cement-based materials labeled by two methods. The results showed that: under the condition of 12.5 mg/mL Cu2+,25 ℃, and 3 h, the adsorption effect of Cu2+ labeled biocarbonate was the best. Under the condition of 2% Eu3+,45 ℃ and 48 h, the effect of labeling biocarbonate with Eu3+ was best. The evaluation results of the two methods on the repair depth were 3 mm,which were consistent with the results of thermogravimetric analysis. By adsorption of Cu2+ and doping of Eu3+, the products can be calibrated and the repair depth of cement-based materials can be characterized with good accuracy.
Key words:  biological calcium carbonate    calibration of repair products    ion doping    fracture characterization of cement-based materials
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TU526  
基金资助: 国家自然科学基金重点项目(51738003)
通讯作者:  * limin.li@163.com;cxqian@seu.edu.cn   
作者简介:  陈沁文,2018年6月毕业于南京林业大学,获得工学学士学位。现为东南大学材料科学与工程学院硕士研究生,在李敏与钱春香教授指导下进行研究,目前主要研究领域为微生物自修复水泥基材料。
李敏,东南大学教授、博士研究生导师。2006年东南大学博士毕业,从1998开始进入东南大学工作,主要从事相变储热材料、高性能保温材料、节能智能型材料、节能绿色材料的设计与制备的研究。在国内外核心刊物和重要国际会议发表论文50余篇,授权发明专利10多项。
钱春香,国务院政府特殊津贴专家、江苏特聘教授、东南大学特聘教授、博导、东南大学绿色建材研究所所长。1992 年南京化工学院博士毕业(师从唐明述院士) ,之后进入东南大学工作,主要从事高性能混凝土与微生物智能混凝土; 微生物水泥与其他低碳胶凝材料和绿色节能建筑材料的研究。在国内外核心刊物和重要国际会议发表论文 200 余篇,授权发明专利 30 多项。
引用本文:    
陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
CHEN Qinwen, SU Yilin, LI Min, QIAN Chunxiang. Characterization of Self-healing Cracks in Cement-based Materials Based on Labled Calcium Carbonate. Materials Reports, 2021, 35(14): 14045-14051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060298  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14045
1 Wang J Y, Dewanckele J, Veerlr C. Cement and Concrete Composites, 2014, 53,289.
2 Ruan S Q, Qiu J S, Weng Y W, et al. Cement and Concrete Research, 2019, 115, 176.
3 Wang K, Qian C X. Construction and Building Materials, 2016, 113,815.
4 Xu J, Wang X Z. Construction and Building Materials, 2018,167,1.
5 Suleiman A R,Nehdi M L. Cement and Concrete Research, 2018,111,197.
6 Chen H C, Qian C X, Ren L F. Journal of Southeast University (Natural Science Edition), 2016,46(3), 606(in Chinese).
陈怀成,钱春香,任立夫.东南大学学报(自然科学版), 2016,46 (3), 606.
7 Qian C X, Feng J H, Su Y L. Materials Report B: Research Papers, 2019,33(6), 1983(in Chinese).
钱春香,冯建航,苏依林. 材料导报:研究篇, 2019, 33(6),1983.
8 Hong S X, Liu P, Zhang J C. Cement and Concrete Composites, 2019,100, 15.
9 Wiketor V, Jonkers H M. Cement and Concrete Composites, 2011, 33,763.
10 Snoeck D, Dewanckele J, Cnudde V,et al. Cement and Concrete Composi-tes, 2016, 65, 83.
11 Bang S S, Galinat J K, Ramakrishnan V. Enzyme Microbial Technology, 2001,28(4-5), 404.
12 Jonkers H M, Schlangen E.In: Proceedings of the First International Conferencr on Self-healing Materials.Amsteredam,2007, pp. 18.
13 Rong H, Wei G Q, Ma G W, et al. Construction and Building Materials, 2020, 244, 378112.
14 Pitcha J, Karn J, Peem N. Construction and Building Materials, 2019, 212, 737.
15 Fang G H, Liu Y Q, Qin S F,et al. Construction and Building Materials, 2018,179, 336.
16 Sun-Gyu C, Wang K J, Wen Z Y. Cement and Concrete Composites, 2017, 83, 209.
17 Zhang Z G, Ding Y Z, Qian S Z. Construction and Building Materials, 2019,196, 195.
18 Wang J Y, Mignonc A, Trensona G. Cement and Concrete Composites, 2018,93, 309.
19 Wang K.Effects of physico-chemical parameters on characteristics of microbial induced calcium carbonate. Master's Thesis,Southeast University,China,2018(in Chinese).
王凯.理化环境参数对微生物诱导碳酸钙特性的影响. 硕士学位论文, 东南大学, 2018.
20 Kojima Y, Doi S, Yasue T. Journal Ceramic Socirty Japan, 2003, 111, 343.
21 Yang M, Huang Q, Jin X. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 386(1), 87.
22 Gao Y, Sun Y, Zou H, et al. Materials Science and Engineering: B, 2016, 203, 52.
[1] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[2] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[3] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[4] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed