Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9157-9167    https://doi.org/10.11896/cldb.20040204
  无机非金属及其复合材料 |
水泥水化产物——水化硅酸钙(C-S-H)的研究进展
刘新1, 冯攀1,2,*, 沈叙言1, 王浩川1, 赵立晓1, 穆松2,3, 冉千平1,2,3, 缪昌文1,*
1 东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
2 高性能土木工程材料国家重点实验室,南京 210008
3 江苏苏博特新材料股份有限公司,南京 211103
Advances in the Understanding of Cement Hydrate — Calcium Silicate Hydrate (C-S-H)
LIU Xin1, FENG Pan1,2,*, SHEN Xuyan1, WANG Haochuan1, ZHAO Lixiao1, MU Song2,3, RAN Qianping1,2,3, MIAO Changwen1,*
1 Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210008, China
3 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
下载:  全 文 ( PDF ) ( 13722KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水化硅酸钙(C-S-H)作为水泥基材料的主要水化产物,决定着水泥基材料的强度发展、收缩、徐变和结构的服役寿命,被称为水泥基材料的“基因”。对C-S-H组成、结构和性能的充分认识有助于理解水泥基材料微结构的形成机理,进而对其性能进行自下而上的设计和调控。近年来先进测试和分析技术的发展为C-S-H基本性能的研究提供了新思路。C-S-H的成核生长理论、力学性能提升以及形貌调控等逐渐成为当前研究热点,已取得重要进展。
学者们大多采用合成的方法制备体系纯净且具有一定结晶度的C-S-H,并以此研究水泥体系中无定形C-S-H凝胶的基本性能。研究发现,双分解合成C-S-H的成核生长过程中存在球形中间体,其最终转化为箔片状形貌的产物,遵循非经典的成核生长方式。在亚粒子尺度,越来越多的结构信息表明,与尖乃石相比,C-S-H的结构与托贝莫来石更为接近;在粒子尺度上,CM凝胶系列模型被广泛应用于解释C-S-H比表面积等物理参数以及水泥基材料收缩徐变的机理。C-S-H的Ca/Si、含水量、硅链聚合程度以及形貌等微纳结构的广泛研究为建立C-S-H微纳结构与宏观性能之间的联系提供了丰富的数据支撑。对C-S-H进行本征结构调控有望从根本上改善水泥基材料韧性差的力学特征,许多学者试图从孔结构调控、有机和无机复合材料构建以及纳米材料改性等方面提升C-S-H的力学性能,取得了一定突破。
本文系统总结了C-S-H的合成方法、成核生长理论、结构模型;主要从Ca/Si、含水量、硅链聚合程度以及形貌四个方面综述了C-S-H的微纳结构;围绕形貌和力学性能介绍了C-S-H的调控和设计方法;分析了目前存在的研究不足并提出了未来的发展方向,以期为全面认识C-S-H以及水泥基材料的性能调控提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘新
冯攀
沈叙言
王浩川
赵立晓
穆松
冉千平
缪昌文
关键词:  水化硅酸钙(C-S-H)  成核生长  模型  微纳结构  力学性能提升    
Abstract: As a major hydration product, calcium silicate hydrate (C-S-H) determines the properties of cementitious materials from every perspective including strength development, shrinkage, creep, and durability. Thus C-S-H is often considered as the “gene” of cementitious materials. Therefore, a comprehensive knowledge of the compositions, structures and performances of C-S-H would advance our understanding of the intrinsic properties and microstructure development of cementitious materials, thereby the macro performances of cement-based materials can be better controlled and even designed from the bottom up accordingly. In recent years, the development of the advanced characterization and analytical technology provides novel and inspiring methods to the investigation of the C-S-H. Great achievements have been made through an increa-sing number of literatures, which have reported the theories on the nucleation and growth, the improvement on mechanical properties together with morphology controlling of C-S-H.
Synthetic C-S-H which is relatively pure and with higher crystallinity is usually favored by researchers than the amorphous C-S-H gel in cementitious materials. It is demonstrated that the globular C-S-H is observed in the nucleating and growing course of C-S-H synthesized by double decomposition reaction which later on transforms to foil-like C-S-H as the final product, in line with the non-classical nucleation and growth pathway. At sub-particle level, more and more evidences suggest that C-S-H structure is closer to that of tobermorite rather than jennite. At particle level, CM colloidal models are widely used to explain the physical properties, such as specific surface area, and behaviors of the shrinkage and creep of cement-based materials. The extensive investigations on the characteristic parameters of C-S-H, including Ca/Si, the content of water, silicate chain structure and morphology provide more information for the establishment of the relationship between features at the micro/nano level and properties at macroscopic scale. Additionally, the controlling of the intrinsic C-S-H structure provides a promising way to improve the toughness of cementitious materials. Some achievements have been reached compassing the refinement of the pore structure, development of organic-inorga-nic composites and optimization of the microstructure by using nano materials.
The methods of synthesizing C-S-H, nucleation and growth theories of C-S-H as well as structural models are summarized systemically in this paper, through combining the classical theories and the latest investigations. The characteristics of C-S-H micro/nano structure are reviewed mainly from its Ca/Si, H2O/Si, the degree of polymerization of silicate chain and morphologies. The approaches for controlling and designing C-S-H in terms of morphologies and mechanical properties are introduced. The limitations of the current researches and perspectives for the future on the investigation of C-S-H are provided in the end.
Key words:  calcium silicate hydrate (C-S-H)    nucleation and growth    model    micro/nano structure    improvement on mechanical property
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TQ172.11  
  TU528.01  
基金资助: 国家自然科学基金(51890904;1706222;51708108;51708483); 高性能土木工程材料国家重点实验室开放基金(2018CEM001)
通讯作者:  pan.feng@seu.edu.cn; mcw@cnjsjk.cn   
作者简介:  刘新,2018年6月毕业于东南大学,获得工学学士学位。现为东南大学材料科学与工程学院博士研究生,在缪昌文院士、冯攀博士的指导下进行研究。目前主要从事水化硅酸钙的生长、劣化与性能提升的研究。
冯攀,博士,东南大学教师,硕士研究生导师,东南大学超材料研究所副主任,东南大学至善学者。先后在东南大学、美国标准与技术研究院攻读博士与博士后。2015年毕业于东南大学,并于2016年就职于东南大学。长期从事水泥混凝土微结构方面的研究,主持国家自然科学基金(青年基金)1项(在研)、国家重点实验室重点基金1项(在研),参与完成973子课题1项。先后获得美国标准与技术研究院最佳访问学者奖,《美国硅酸盐学报》最佳论文奖。申请发明专利8项,发表SCI论文30余篇,其中第一作者与通讯作者论文22篇。
缪昌文,中国工程院院士,东南大学教授,博士研究生导师,高性能土木工程材料国家重点实验室主任、首席科学家,江苏省建筑科学研究院有限公司董事长,先进土木工程材料国际联合实验室主席。1982年毕业于南京工学院(现东南大学)。长期从事土木工程材料理论研究与工程技术应用研究,三十多年来一直活跃在我国重大工程建设项目的第一线。先后承担了包括国家“973”项目、自然科学基金重点项目等国家、省部级科研项目30余项,在混凝土基础理论的研究、重大基础设施工程服役寿命及耐久性能提升技术的研究、多功能土木工程材料的研发等方面取得了多项成果。先后获国家技术发明二等奖1项,国家科技进步二等奖3项,省部级科技进步一等奖6项,国家发明专利83项,出版专著4部,发表论文200余篇,其中SCI、EI或ISTP收录150多篇。获得香港何梁何利奖、全国杰出专业技术人才奖、江苏省十大杰出专利发明人、江苏省首届创新创业人才奖、江苏省劳动模范、江苏省留学回国先进个人、南京市科技功臣等荣誉。
引用本文:    
刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
LIU Xin, FENG Pan, SHEN Xuyan, WANG Haochuan, ZHAO Lixiao, MU Song, RAN Qianping, MIAO Changwen. Advances in the Understanding of Cement Hydrate — Calcium Silicate Hydrate (C-S-H). Materials Reports, 2021, 35(9): 9157-9167.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040204  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9157
1 Hwang S H, Miller J B, Shahsavari R. ACS Applied Materials & Interfaces,2017,9(42),37055.
2 Ni S, Chang J, Chou L. Journal of Biomedical Materials Research Part A,2006,76(1),196.
3 Wu J, Zhu Y J, Cao S W, et al. Advanced Materials,2010,22(6),749.
4 Zhang Z, Wang X, Wang H, et al. Chemical Engineering Journal,2018,344,53.
5 Dong Y, Lu C H, Ni Y R, et al. Bulletin of Chinese Ceramic Society,2012,31(3),511(in Chinese).
董亚,陆春华,倪亚茹,等.硅酸盐通报,2012,31(3),511.
6 Pellenq J M R, Damme H V. MRS Bulletin,2004,29(5),319.
7 Plassard C, Lesniewska E, Pochard I, et al. Langmuir,2005,21(16),7263.
8 Jennings H M. Materials and Structures,2004,37(1),59.
9 Yao W, Liang K, He L. Chinese Journal of Materials Research,2010,24(2),123(in Chinese).
姚武,梁慷,荷莉.材料研究学报,2010,24(2),123.
10 Black L, Garbev K, Gee I. Cement and Concrete Research,2008,38(6),745.
11 Morandeau A, Thiéry M, Dangla P. Cement and Concrete Research,2014,56,153.
12 Ding Q, Wang H, Hu C, et al. Journal of Wuhan University of Technology-Material Science Edition,2016,31(5),1002.
13 Harris A W, Manning M C, Tearle W M, et al. Cement and Concrete Research,2002,32(5),731.
14 Allen A J, Thomas J J, Jennings H M. Nature Materials,2007,6(4),311.
15 Chiang W S, Fratini E, Baglioni P, et al. The Journal of Physical Che-mistry C,2012,116(8),5055.
16 Taylor R, Sakdinawat A, Chae S R, et al. Journal of the American Ceramic Society,2015,98(7),2307.
17 Grangeon S, Claret F, Roosz C, et al. Journal of Applied Crystallography,2016,49(3),771.
18 Geng G, Taylor R, Bae S, et al. Cement and Concrete Research,2015,77,36.
19 Nonat A. Cement and Concrete Research,2004,34(9),1521.
20 Hou D, Zhao T, Ma H, et al. The Journal of Physical Chemistry C,2015,119(3),1346.
21 Li B, Li N, Brouwers H J H, et al. Construction and Building Materials,2020,233,117347.
22 Ye J Y, Zhang W S, Wang H X, et al. Journal of the Chinese Ceramic Society,2010,38(12),2346(in Chinese).
叶家元,张文生,王宏霞,等.硅酸盐学报,2010,38(12),2346.
23 Saito F, Mi G, Hanada M. Solid State Ionics,1997,101,37.
24 Xu W, Wu X L. Bulletin of Chinese Ceramic Society,2018,37(4),1294(in Chinese).
徐文,武小雷.硅酸盐通报,2018,37(4),1294.
25 Peng X Q, He L J, Liu Y M. Journal of Chongqing University (Natural Science Edition),2005,28(5),59(in Chinese).
彭小芹,何丽娟,刘艳萌.重庆大学学报(自然科学版),2005,28(5),59.
26 Matsuyama H, Young J F. Advances in Cement Research,2000,12(1),29.
27 Land G, Stephan D. Cement and Concrete Composites,2018,87,73.
28 Garrault-Gauffinet S, Nonat A. Journal of Crystal Growth,1999,200(3-4),565.
29 Avrami M. Journal of Chemical Physics,1939,7(12),1103.
30 Avrami M. Journal of Chemical Physics,1940,8(2),212.
31 Thomas J J. Journal of the American Ceramic Society,2007,90(10),3282.
32 Plank J, Schönlein M, Kanchanason V. Journal of Organometallic Che-mistry,2018,869,227.
33 Picker A. Influence of polymers on nucleation and assembly of calcium silicate hydrates. Ph.D. Thesis, University of Konstanz, Germany,2013.
34 Krautwurst N, Nicoleau L, Dietzsch M, et al. Chemistry of Materials,2018,30(9),2895.
35 Schönlein M, Plank J. Cement and Concrete Research,2018,106,33.
36 Valentini L, Favero M, Dalconi M C, et al. Crystal Growth & Design,2016,16(2),646.
37 Chen J J. The nanostructure of calcium silicate hydrate. Ph.D. Thesis, Northwestern University, USA,2003.
38 Richardson I G. Cement and Concrete Research,2008,38(2),137.
39 Taylor H F W. Cement chemistry, Thomas Telford, UK,1997.
40 Taylor H F W. Journal of the Chemical Society,DOI:10.10391jr9500003682.
41 Shi H S, Ye Y Y, Wu K, et al. Fly Ash Comprehensive Utilization,2017(5),69(in Chinese).
施惠生,叶钰燕,吴凯,等.粉煤灰综合利用,2017(5),69.
42 Papatzani S, Paine K, Calabria-Holley J. Construction and Building Materials,2015,74,219.
43 Yao W, He L. Journal of the Chinese Ceramic Society,2010,38(4),754(in Chinese).
姚武,何莉.硅酸盐学报,2010,38(4),754.
44 Taylor H F W, Howlson J W. Clay Minerals Bulletin,1956,3(16),98.
45 Taylor H F W. Journal of the American Ceramic Society,1986,69(6),464.
46 Cong X, Kirkpatrick R J. Advanced Cement Based Materials,1996,3,144.
47 Nonat A, Lecoq X. In: Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials. Berlin, Heidelberg,1998,pp.197.
48 Chen J J, Thomas J J, Taylor H F W, et al. Cement and Concrete Research,2004,34(9),1499.
49 Richardson I G. Cement and Concrete Research,2004,34(9),1733.
50 Richardson I G, Groves G W. Cement and Concrete Research,1992,22(6),100.
51 Powers T C, Brownyard T L. ACI Journal Proceedings,1948,43(9),250.
52 Brouwers H J H. Cement and Concrete Research,2004,34(9),1697.
53 Brouwers H J H. Cement and Concrete Research,2005,35(10),1922.
54 Feldman R F, Sereda P J. Engineering Journal,1970,53(8-9),53.
55 Wittmann F H. In: Conference on hydraulic cement pastes: their structure and properties. Sheffield, England,1976,pp.69.
56 Jennings H M. Cement and Concrete Research,2000,30(6),101.
57 Jennings H M. Cement and Concrete Research,2008,38(3),275.
58 Lothenbach B, Nonat A. Cement and Concrete Research,2015,78,57.
59 Richardson I G. Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials,2014,70(Pt 6),903.
60 Macphee D E, Lachowski E E, Glasser F P. Advances in Cement Research,1988,1(3),131.
61 Ishida H, Okada Y, Mitsuda T. Journal of the American Ceramic Society,1992,75(2),359.
62 Matsuyam H, Young J F. Advances in Cement Research,2000,12(1),29.
63 García-Lodeiro I, Fernández-Jiménez A, Sobrados I, et al. Journal of the American Ceramic Society,2012,95(4),1440.
64 Tajuelo Rodriguez E, Richardson I G, Black L, et al. Advances in Applied Ceramics,2015,114(7),362.
65 Roosz C, Gaboreau S, Grangeon S, et al. Langmuir,2016,32(27),6794.
66 Liu L, Sun C, Geng G, et al. Cement and Concrete Research,2019,123,105793.
67 Garbev K, Günter G, Bornefeld M, et al. Journal of the American Cera-mic Society,2008,91(9),3005.
68 Renaudin G, Russias J, Leroux F, et al. Journal of Solid State Chemistry,2009,182(12),3312.
69 Wang Y, Zhao Q, Zhou S, et al. In: 6th Annual International Conference on Material Science and Environmental Engineering (MSEE). Chongqing, China,2019,pp.1.
70 Pelisser F, Gleize P J P, Mikowski A. The Journal of Physical Chemistry C,2012,116(32),17219.
71 Feldman R F, Ramachandran V S. Cement and Concrete Research,1971,1(6),607.
72 Gallucci E, Zhang X, Scrivener K L. Cement and Concrete Research,2013,53,185.
73 Muller A C A, Scrivener K L, Gajewicz A M, et al. Journal of Physical Chemistry C,2013,117(1),403.
74 Wyrzykowski M, Mcdonald P J, Scrivener K L, et al. The Journal of Physical Chemistry C,2017,121(50),27950.
75 García-Lodeiro I, Fernández-Jiménez A, Blanco M T, et al. Journal of Sol-Gel Science and Technology,2007,45(1),63.
76 Sáez Del Bosque I F, Martínez-Ramírez S, Blanco-Varela M T. Construction and Building Materials,2014,52,314.
77 García Lodeiro I, Macphee D E, Palomo A, et al. Cement and Concrete Research,2009,39(3),147.
78 Brough A R, Dobson C M, Richardson I G, et al. Journal of Materials Science,1994,29(15),3926.
79 Pustovgar E, Sangodkar R P, Andreev A S, et al. Nature Communication,2016,7,10952.
80 Sevelsted T F, Skibsted J. Cement and Concrete Research,2015,71,56.
81 Shen W G, Xiao L Q, Ma W, et al. Journal of the Chinese Ceramic Society,2008,36(4),487.
82 Zhang B, He Z, Sun H. Journal of Wuhan University of Technology-Material Science Edition,2010,25(4),592.
83 Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials, CRC Press, USA,2018.
84 Scrivener K, Ouzia A, Juilland P, et al. Cement and Concrete Research,2019,124,105823.
85 Zampini D, Shah S P, Jennings H M. Journal of Materials Research,2011,13(7),1888.
86 Berodier E, Scrivener K. Journal of the American Ceramic Society,2014,97(12),3764.
87 Kanchanason V, Plank J. Cement and Concrete Research,2017,102,90.
88 Kumar A, Walder B J, Mohamed A K, et al. Journal of Physical Chemistry C,2017,121(32),17188.
89 Kumar A. Synthetic calcium silicate hydrates. Ph.D. Thesis, école Polytechnique Fédérale de Lausanne (EPFL), Switzerland,2017.
90 Zhang M, Chang J. Ultrason Sonochem,2010,17(5),789.
91 Moghaddam S E, Hejazi V, Hwang S H, et al. Journal of Materials Chemistry A,2017,5(8),3798.
92 Siramanont J, Bowen P. American Concrete Institute Special Publication,2018,329,403.
93 Constantinides G, Ulm F J. Cement and Concrete Research,2004,34(1),67.
94 Geng G, Myers R J, Li J, et al. Scientific Reports,2017,7,44032.
95 Zhang N, Shahsavari R. Journal of the Mechanics and Physics of Solids,2016,96,204.
96 Kamali M, Ghahremaninezhad A. Scientific Reports,2018,8(1),9491.
97 Zhou Y, Hou D, Geng G, et al. Physical Chemistry Chemical Physics,2018,20(12),8247.
98 Picker A, Nicoleau L, Burghard Z, et al. Science Advances,2017,3(11),e1701216.
99 Hou D, Lu Z, Li X, et al. Carbon,2017,115,188.
100 Yao S, Zou F, Hu C, et al. Journal of the American Ceramic Society,2019,103(1),681.
[1] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[2] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[3] 张济涛, 耿健, 李东, 朱浩泽. 蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J]. 材料导报, 2021, 35(8): 8064-8069.
[4] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[5] 杨少朋, 尉文超, 胡芳忠, 王毛球, 汪开忠, 王自敏, 时捷. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183.
[6] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[7] 陈光鹏, 张春涛. 泡沫灭火后Q460高强钢力学性能试验研究[J]. 材料导报, 2021, 35(6): 6151-6156.
[8] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[9] 崔立龙, 凌天清, 曾凡贵, 梁丽娟, 李汝凯. 基于探地雷达的密级配覆水沥青层的空隙率检测[J]. 材料导报, 2021, 35(4): 4092-4098.
[10] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[11] 梁捷, 耿佃桥, 张群. 固液密度比对PMMA/HDPE悬浮液粘度的影响[J]. 材料导报, 2021, 35(4): 4181-4185.
[12] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[13] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[14] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[15] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed