Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8034-8041    https://doi.org/10.11896/cldb.20030217
  无机非金属及其复合材料 |
氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究
郭丽萍1,2,†, 费香鹏1,†, 曹园章1, 薛晓丽1, 丁聪1
1 东南大学材料科学与工程学院,南京 211189
2 江苏省土木工程材料重点实验室,江苏省先进土木工程材料协同创新中心,南京 211189
Molecular Kinetics of Competitive Adsorption of Chloride and Sulphate Ions on C-S-H Surface
GUO Liping1,2,†, FEI Xiangpeng1,†, CAO Yuanzhang1, XUE Xiaoli1, DING Cong1
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Jiangsu Key Laboratory of Construction Materials, Jiangsu Collaborative Innovation Center for Sustainable Civil Engineering Materials & Structures, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 5690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水化硅酸钙凝胶(C-S-H)是水泥基材料中主要起粘结作用的胶体,也是发生氯离子和硫酸根离子物理吸附的主要原因。由于实验方法无法直观表现C-S-H物理吸附的过程以及吸附量随时间的变化规律,本研究采用分子动力学模型模拟C-S-H物理吸附氯离子及硫酸根离子的过程,探究吸附过程中氯离子和硫酸根离子之间的交互作用关系。模拟利用配位数并结合等温吸附法计算了3.5%NaCl溶液及3.5%NaCl+3.5%Na2SO4复合溶液中Cl-和SO42-的吸附量。研究发现:物理吸附作用包括离子间的近程库伦(Coulomb)作用以及长程范德华(VDW)作用,SO42-抑制了C-S-H对Cl-的吸附,减弱了C-S-H对Cl-的长程VDW作用,但并没有减少位点对Cl-的吸附量,只是延缓了吸附发生的时间;SiOCa+是Cl-及SO42-的主要吸附位点,SiOH可以吸附少量Cl-,但对SO42-无明显吸附作用,且SiOCa+与SiOH位点存在竞争关系。两种溶液中C-S-H凝胶对Cl-的吸附量相差不大,约为0.06 mmol/g,对SO42-的吸附量约为0.02 mmol/g。由分子动力学计算得出的C-S-H的离子吸附量,与通过测试实验合成的C-S-H及水泥浆体中的C-S-H的离子吸附量相符,由此可以证明分子动力学模拟可准确、可靠地表征侵蚀离子在水泥基材料内的复杂交互作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丽萍
费香鹏
曹园章
薛晓丽
丁聪
关键词:  C-S-H吸附  动力学模型  氯离子  硫酸根离子  物理吸附    
Abstract: Hydrated calcium silicate (C-S-H) gel is the main bonding colloid in cement-based materials, and it is also the main source of physical adsorption of chloride and sulphate ions. Due to that the process of C-S-H physical adsorption and the change of the adsorption amount with time cannot be reflected directly by experimental methods. In this paper, a molecular dynamics model was used to simulate the process of C-S-H phy-sical adsorption of chloride and sulphate ions. The interaction between chloride and sulfate ions during the adsorption process was investigated. The coordination number and the isothermal adsorption method were used to calculate the adsorption amount of Cl- and SO42- in 3.5% NaCl and 3.5% NaCl + 3.5% Na2SO4 solution. The research results show that the adsorption capacity of C-S-H gel for Cl- in the two solutions is almost the same, about 0.1 mmol/g, and the adsorption capacity for SO42- is about 0.04 mmol/g in compound salts solution .The physical adsorption includes short-range Coulomb interaction between ions and long-range van der Waals (VDW) interaction. The adsorption of C-S-H to Cl- is delayed and the long-range VDW effect of C-S-H on Cl- is weakened by SO42-. However, the presence of SO42- doesn't reduce the amount of Cl- adsorption at the site, it only delays the time of adsorption. SiOCa+ is the main adsorption site for Cl- and SO42-. The SiOH sites which have no obvious adsorption effect on SO42- have ability to adsorb Cl-, but the amount is negligible. Moreover, there is also a competitive relationship between SiOCa+ and SiOH sites. The ions adsorption of C-S-H calculated by molecular dynamic is consistent with the ion adsorption of the C-S-H synthesized by experimental methods or the C-S-H in cement slurry. It can be proved that molecular dynamics simulations can be used to accurately and reliably characterize the complex interactions of aggressive ions in cement-based materials.
Key words:  C-S-H adsorption    kinetics model    chloride ions    sulphate ions    physical adsorption
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51778133);国家重点研发计划(973计划,2015CB655102)
作者简介:  郭丽萍,博士,教授,博导。主要研究方向有超高延性水泥基复合材料、混凝土耐久性、固废物再生自清洁无机涂层。主持国家自然科学基金项目(51778133) 和国家973项目“严酷环境下混凝土材料与结构长寿命的基础研究”(项目编号:2015CB655102)第二课题第一子题研究等。
费香鹏,东南大学硕士研究生,主要从事混凝土耐久性的研究,参与国家973项目“严酷环境下混凝土材料与结构长寿命的基础研究”(项目编号:2015CB655102)的研究。
引用本文:    
郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
GUO Liping, FEI Xiangpeng, CAO Yuanzhang, XUE Xiaoli, DING Cong. Molecular Kinetics of Competitive Adsorption of Chloride and Sulphate Ions on C-S-H Surface. Materials Reports, 2021, 35(8): 8034-8041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030217  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8034
1 Cao Y Z, Guo L P, Zang W J, et al. Materials Reports A: Reveiw Papers,2018,32(12),4142(in Chinese).
曹园章,郭丽萍,臧文洁,等.材料导报:综述篇,2018,32(12),4142.
2 Xu J, Song Y, Jiang L, et al. Construction and Building Materials,2016,104,9.
3 Geng J, Easterbrook D, Li L Y, et al. Cement and Concrete Research,2015,68,211.
4 Shaheen F, Pradhan B. Construction and Building Materials,2015,101,99.
5 Cao Y Z, Guo L P, Xue X L. Journal of Southeast University(Natural Science Edition),2019,49(4),712(in Chinese).
曹园章,郭丽萍,薛晓丽.东南大学学报(自然科学版),2019,49(4),712.
6 Abdalkader A H M , Lynsdale C J , Cripps J C. Construction and Buil-ding Materials,2015,78,102.
7 Maes M , De Belie N. Cement and Concrete Composites,2014,53,59.
8 Chen J J, Thomas J J, Taylor H F W, et al. Cement and Concrete Research,2004,34(9),1499.
9 Maddalena R, Li K, Chater P A, et al. Construction and Building Materials,2019,223,554.
10 Florea M V A, Brouwers H J H. Cement and Concrete Research,2012,42,282.
11 Hirao H, Yamada K, Takahashi H, et al. Journal of Advanced Concrete Technology,2005,3(1),77.
12 Elakneswaran Y, Nawa T, Kurumisawa K. Cement and Concrete Research,2009,39(4),340.
13 Wang X G, Shi C J, He F Q, et al. Journal of the Chinese Ceramic Society,2013(2),65(in Chinese).
王小刚,史才军,何富强,等.硅酸盐学报,2013(2),65.
14 Luping T, Nilsson L O. Cement and Concrete Research,1993,23(2),247.
15 Li Q L, Shi C J, He F Q, et al. Journal of the Chinese Ceramic Society,2013,41(3),320(in Chinese).
李庆玲,史才军,何富强,等.硅酸盐学报,2013,41(3),320.
16 Shi Z, Geiker M R, De Weerdt K, et al. Cement and Concrete Research,2017,95,205.
17 Ma B G, Shan Z X, Tan H B, et al. Journal of Wuhan University of Technology,2017,39(12),1(in Chinese).
马保国,单志欣,谭洪波,等.武汉理工大学学报,2017,39(12),1.
18 Guo M L, Xiao J, Wang J L. Journal of Building Materials,2020(1),1(in Chinese).
郭明磊,肖佳,王佳雷.建筑材料学报,2020(1),1.
19 Gou M F, Guan X M, Sun Q. Journal of Building Materials,2015,18(3),363(in Chinese).
勾密峰,管学茂,孙倩.建筑材料学报,2015,18(3),363.
20 Zhang M, Chen J, Lv Y, et al. Construction and Building Materials,2013,39,26.
21 Jin Z Q, Sun W, Zhang Y S, et al. Journal of the Chinese Ceramic Society,2006(5),118(in Chinese).
金祖权,孙伟,张云升,等.硅酸盐学报,2006(5),118.
22 Zhou Y, Hou D, Jiang J, et al. Microporous and Mesoporous Materials,2018,255,23.
23 Hou D, Jia Y, Yu J, et al. The Journal of Physical Chemistry C,2018,122,28021.
24 Hou D S, Li D K, Yu J, et al. The Journal of Physical Chemistry C,2017,121,13786.
25 Yan L M, Zhu S H. Theory and practice of molecular dynamics simulation, Science Press, China,2013(in Chinese).
严六明,朱素华.分子动力学模拟的理论与实践,科学出版社,2013.
26 Chen Z L, Xu W R, Tang L D. Theory and practice of molecular simulation, Chemical Industry Press, China,2007(in Chinese).
陈正隆,徐为人,汤立达.分子模拟的理论与实践,化学工业出版社,2007.
27 Yan Y R. Atomic simulation and performance design of the calcium silicate hydrates. Master's Thesis, Southeast University, China,2017(in Chinese).
阎奕汝.水化硅酸钙的原子模拟和性能设计.硕士学位论文,东南大学,2017.
28 Jennings H M . Cement and Concrete Research,2000,30(1),101.
29 Jennings H M . Cement and Concrete Research,2008,38(3),275.
30 Talor H F W. Cement chemistry (2nd edition), Thomas Telford, UK,1997.
31 Pellenq J M , Kushima A , Shahsavari R, et al. Proceedings of the Natio-nal Academy of Sciences,2009,106(38),16102.
32 Richardson I G. Cement and Concrete Research,2008,38,137.
33 Bhat P A, Debnath N C. Journal of Physics and Chemistry of Solids,2011,72(8),920.
34 Zhou Y. Study on the microstructure and properties of calcium silicate hydrates based on molecular dynamics simulation. Ph.D. Thesis, Southeast University, China,2018(in Chinese).
周扬.基于分子动力学的水化硅酸钙的微结构与性能研究.博士学位论文,东南大学,2018.
35 Liu J F, Zeng D L, Cai Z Y, et al. Journal of Engineering Thermophy-sics,2006,27(3),373(in Chinese).
刘娟芳,曾丹苓,蔡智勇,等.工程热物理学报,2006,27(3),373.
36 Hu Y. Physical chemistry(Fifth edition), Higher Education Press, China,2007(in Chinese).
胡英.物理化学(第五版),高等教育出版社,2007.
37 Sun H J . The Journal of Physical Chemistry B,1998,102,7338.
38 Mindess S, Young J F, Darwin D. Concrete(2nd edition), Chemical Industry Press, China,2004.
39 Zhou Y, Hou D, Jiang J, et al. Construction and Building Materials,2016,126,991.
[1] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[2] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[3] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[4] 余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
[5] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 246-249.
[6] 宋普涛, 王晶, 关青锋, 周永祥, 黄靖, 冷发光. 混凝土用珊瑚砂氯离子溶出规律研究[J]. 材料导报, 2020, 34(Z2): 250-254.
[7] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[8] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[9] 刘志勇, 汤安琪, 王加佩, 张云升. 非饱和水泥基复合材料的氯离子传输性能研究进展[J]. 材料导报, 2020, 34(15): 15083-15091.
[10] 石亮, 谢德擎, 王学明, 袁俊, 穆松, 魏鹏, 朱梦伟. 抗侵蚀抑制剂对混凝土吸水性能及抗盐结晶性能的影响[J]. 材料导报, 2020, 34(14): 14093-14098.
[11] 陈昌, 杨绿峰, 余波. 海洋潮汐区混凝土表面氯离子浓度的时变规律及多因素模型[J]. 材料导报, 2019, 33(Z2): 321-326.
[12] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[13] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[14] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[15] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed