Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8042-8048    https://doi.org/10.11896/cldb.20010114
  无机非金属及其复合材料 |
减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响
龚建清1,2, 罗鸿魁1,2, 张阳1,2, 龚啸3, 谢泽酃3, 吴五星3, 戴远帆1,2
1 湖南大学土木工程学院,长沙 410082
2 湖南大学,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
3 湖南省高速公路建设开发总公司,长沙 410000
Effect of Shrinkage Reducing Agent and HCSA Expansion Agent on Mechanical Properties and Shrinkage Properties of UHPC
GONG Jianqing1,2, LUO Hongkui1,2, ZHANG Yang1,2, GONG Xiao3, XIE Zeling3, WU Wuxing3, DAI Yuanfan1,2
1 College of Civil Engineering, Hunan University, Changsha 410082, China
2 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, Hunan University, Changsha 410082, China
3 Hunan Provincial Expressway Construction and Development Corporation, Changsha 410000, China
下载:  全 文 ( PDF ) ( 8967KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究主要对比了减缩剂和高性能混凝土膨胀剂(HCSA)单掺以及复掺时,对超高性能混凝土(UHPC)强度、收缩性能的影响。结果显示,减缩剂会延缓水泥水化,延长水泥凝结时间,不利于UHPC早期强度的发展。随着减缩剂掺量(0%~2%,质量分数)增加,UHPC的自收缩降低,当减缩剂掺量为0.5%时可有效降低UHPC的干燥收缩。而HCSA膨胀剂缩短UHPC的凝结时间,早期强度的发展快;HCSA膨胀剂具有降低UHPC内部有害孔数量、减小总孔隙率的作用,能够降低UHPC的自收缩和干燥收缩;但HCSA膨胀剂过量时,无法获得足够的水分参与反应,且有破坏UHPC结构的风险。减缩剂和HCSA膨胀剂复掺时,UHPC的抗压、抗折强度均大于单掺减缩剂时的强度,且小于单掺HCSA膨胀剂时的强度。2%减缩剂和10%HCSA膨胀剂复掺对UHPC收缩的抑制作用最好,同时UHPC具有较高的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚建清
罗鸿魁
张阳
龚啸
谢泽酃
吴五星
戴远帆
关键词:  超高性能混凝土  减缩剂  HCSA膨胀剂  抗压强度  抗折强度  自收缩  干燥收缩    
Abstract: In this paper, we mainly compared the effects of ultra high performance concrete (UHPC) on strength and shrinkage when the shrinkage redu-cing agent and high performance concrete expansion agent (HCSA) were combined and mixed. The results show that the shrinkage reducing agent will delay the hydration of cement and increase the setting time, which is not conducive to the development of early strength of concrete. As the amount (0wt%—2wt%) of shrinkage reducing agent increases, the autogenous shrinkage of UHPC decreases. When the amount of shrin-kage reducing agent is 0.5wt%, the drying shrinkage can be effectively reduced. The HCSA expansion agent will accelerate the UHPC setting time and develop the early strength. HCSA expansion agent can reduce the number of harmful pores inside the concrete and reduce the total porosity, which can reduce the autogenous shrinkage and drying shrinkage of UHPC; When the agent is in excess, sufficient moisture cannot be obtained to participate in the hydration, and there is a risk of damaging the structure. When the shrinkage reducing agent and the HCSA expansion agent are compounded, the compressive strength and flexural strength of the UHPC are greater than those of the single anti-shrinkage agent, and less than the strength when the HCSA expansion agent is directly doped. When the 2wt% shrinkage reducing agent and the 10wt% HCSA expansion agent are compounded, the inhibition of UHPC shrinkage is the best and the mechanical properties of UHPC are high.
Key words:  UHPC    shrinkage reducing agent    HCSA expansion agent    compressive strength    flexural strength    autogenous shrinkage    drying shrinkage
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TU5  
基金资助: 湖南省交通厅科技项目(基于超高性能混凝土(UHPC)的装配式混凝土桥梁接缝加固维修新技术研究)
通讯作者:  gongjianqing@hnu.edu.cn   
作者简介:  龚建清,湖南大学副教授,在湖南大学获得工民建专业学士学位和材料学专业工学博士学位,毕业后留校任教。以第一作者身份在国内外学术期刊发表论文10余篇,发表专著3本,申请国家专利3项,国家级以及省部级项目共8项。他主要从事建筑材料的研发,重点研究高性能混凝土的性能。主持国家863高技术项目、国家自然科学基金项目、国家重点研发计划项目以及省自然科学基金项目等。
引用本文:    
龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
GONG Jianqing, LUO Hongkui, ZHANG Yang, GONG Xiao, XIE Zeling, WU Wuxing, DAI Yuanfan. Effect of Shrinkage Reducing Agent and HCSA Expansion Agent on Mechanical Properties and Shrinkage Properties of UHPC. Materials Reports, 2021, 35(8): 8042-8048.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010114  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8042
1 Singh M, Sheikh A H, Mohamed Ali M S, et al. Construction and Buil-ding Materials,2017,138,12.
2 Mosaberpanah M A,Eren O. Procedia Engineering,2016,145,1565.
3 Yoo D Y, Banthia N. Cement and Concrete Composites,2016,73,267.
4 Wang D H, Shi C J, Wu Z M, et al. Construction and Building Mate-rials,2015,96,368.
5 Shi C J, Wu Z M, Xiao J F, et al. Construction and Building Materials,2015,101,741.
6 Sobuz H R, Visintin P, Mohamed Ali M S, et al. Construction and Building Materials,2016,111,251.
7 Yalçnkaya Ç, Yazıcı H. Construction and Building Materials,2017,144,252.
8 Soliman A M, Nehdi M L. Cement and Concrete Composites,2014,46,81.
9 Valipour M, Khayat K H. Construction and Building Materials,2018,184,320.
10 Corinaldesi V, Nardinocchi A, Donnini J. Construction and Building Materials,2015,91,171.
11 Nmai C, Tomita R, Hondo F, et al. Concrete International,1998,20(4),31.
12 Park J J, Yoo D Y, Kim S W, et al. Magazine of Concrete Research,2014,66(14),745.
13 Holt E, Leivo M. Cement and Concrete Composites,2004,26(5),521.
14 Soliman A M, Nehdi M L. Materials & Structures,2011,44(5),879.
15 Seung H P, Gum S R, Kyung T K, et al. Cement and Concrete Compo-sites,2014,49,59.
16 Shen P L, Lu L N, He Y J, et al. Construction and Building Materials,2018,162,512.
17 Li W G, Huang Z Y, Hu G Q, et al. Construction and Building Mate-rials,2017,131,767.
18 Schachinger I, Schmidt K, Heinz D, et al. In: Proc of the 6 International Symposium on Utilization of High Strength/High Performance Concrete. Germany 2002,pp.16.
19 Liu J H, Shi C J, Ma X W, et al. Construction and Building Materials,2017,146,702.
20 Dudziak L, Mechtcherine V. In: 2nd International Symposium on Ultra High-Performance Concrete. Kassel,2008,pp.425.
21 Lura P, Pease B, Mazzotta G, et al. ACI Materials Journal,2007,104(2),187.
22 Yoo D Y, Banthia N, Yoon Y S. Cement and Concrete Composites,2015,64,27.
23 Sun W, Chen H, Luo X, et al. Cement and Concrete Research,2001,31(4),595.
24 Wei H, Ma Q Y, Cui P B. Advanced Materials Research, 2011,163-167,947.
25 Wang A G, Deng M, et al. Journal of Wuhan University of Technology,2011,26(4),78(in Chinese).
王爱国,邓敏,等.武汉理工大学学报,2011,26(4),78.
26 Cao S P, Zhou Q F, Peng Y l, et al. Applied Mechanics & Materials,2013,357,1332.
27 Yoo D Y, Min K H, Lee J H, et al. Construction and Building Materials,2014,73,357.
28 Park J J, Yoo D Y, Kim S W, et al. Magazine of Concrete Research,2013,65(4),248.
29 Park J J, Yoo D Y, Kim S W, et al. Structural Engineering and Mecha-nics,2014,49(6),763.
30 Huang Z Y, Liu Y Q, Li C W. Materials Reports B: Research Papers,2015,29(4),116(in Chinese).
黄政宇,刘永强,李操旺.材料导报:研究篇,2015,29(4),116.
31 Zhao S Z, Liu L, et al. In: 2008 National Special Concrete Technology and Engineering Academic Exchange and 2008 Annual Meeting of Concrete Quality Committee. Xi'an,2008 (in Chinese).
赵顺增,刘立,等.2008年“全国特种混凝土技术及工程”学术交流暨2008年混凝土质量专业委员会年会.西安,2008.
32 GB/T17671-1999. Test method for strength of cement mortar (IOS), Standards Press of China, China,1999(in Chinese).
GB/T 17671-1999.水泥胶砂强度检验方法(ISO法),中国标准出版社,1999.
33 Jensen O M, Hansen P F. Cement and Concrete Research,2002,32(6),973.
34 JGJ/T70-2009. Methods for testing the basic properties of building mortar, China Architecture & Building Press,China,2009(in Chinese).
JGJ/T70-2009.建筑砂浆基本性能实验方法,中国建筑工业出版社,2009.
35 Weiss W J, Borichevsky B B, Slish S P. In: Proceedings of International Symposium on Utilization of High-Strength/High-Performance Concrete. Norway,1998,pp.1339.
36 Brooks J J, Johari M A M, Mazloom M. Cement and Concrete Composites,2000,22(4),293.
37 Meddah M S, Suzuki M, Sato R. Construction and Building Materials,2011,25,239.
38 Monosi S, Troli R, Favoni O, et al. Cement and Concrete Composites,2011,33(4),485.
39 Powers T C, Brownyard T L. Journal Proceedings,1946,43(9),101.
40 Aitcin P C, Neville A, Acker P. Concrete International,1997,19(9),35.
41 Liu J H, Shi C J, Farzadnia N M, et al. Construction and Building Materials,2019,204,276.
[1] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[2] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[3] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[4] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[5] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[6] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[7] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[8] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[9] 周文娟, 侯云芬, 郑东昊. 玻璃纤维对再生骨料板力学性能的影响[J]. 材料导报, 2020, 34(Z1): 216-219.
[10] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[11] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[12] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[13] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[14] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[15] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed