Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8179-8183    https://doi.org/10.11896/cldb.20020030
  金属与金属基复合材料 |
低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律
杨少朋1,2, 尉文超1, 胡芳忠2, 王毛球1, 汪开忠2, 王自敏2, 时捷1
1 钢铁研究总院特殊钢研究所 北京 100081
2 马鞍山钢铁股份有限公司技术中心,马鞍山 243000
The Austenite Grain Growth Behavior of Low Carbon Gear Steel 18CrNiMo7-6
YANG Shaopeng1,2, YU Wenchao1, HU Fangzhong2, WANG Maoqiu1, WANG Kaizhong2, WANG Zimin2, SHI Jie1
1 Institute of Special Steel, Central Iron and Steel Research Institute, Beijing 100081, China
2 Technology Center, Ma'anshan Iron and Steel Co., Ltd., Ma'anshan 243000, China
下载:  全 文 ( PDF ) ( 9380KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用金相实验法研究了低碳齿轮钢18CrNiMo7-6在不同加热条件下奥氏体晶粒的长大行为,建立了Arrhenius奥氏体晶粒长大模型,并利用时间指数对模型进行了优化。结果表明:在1 173~1 373 K范围内,奥氏体晶粒平均尺寸随着温度的升高及时间的延长而增大,并且对温度的敏感性高于对时间的敏感性,显著粗化温度为1 273 K;建立了Arrhenius奥氏体晶粒长大模型D=2.223×106exp [-132 086/(RT)]tn,其中激活能Q=132.086 kJ/mol;时间指数n随温度的变化近似服从S型函数,并建立了相关的数学方程式n=0.077 5+0.231 7/(1+10(1 326.73-T)×0.023 5),用该方程式对考虑合金元素的Arrhenius方程中的时间指数进行了优化,将优化后由该模型得到的奥氏体晶粒平均尺寸的计算值与实测值进行了对比,结果显示其吻合性较未优化前的模型更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨少朋
尉文超
胡芳忠
王毛球
汪开忠
王自敏
时捷
关键词:  齿轮钢  奥氏体晶粒  长大模型  奥氏体化温度  时间指数    
Abstract: The austenite grain growth behavior of low carbon gear steel 18CrNiMo7-6 under different heating conditions was studied by metallographic technique, and an Arrhenius growth model for the average austenite grain size was established,then was optimized by using time exponent. The results showed that the average austenite grain size gradually increased with the temperature and time increasing from 1 173 K to 1 373 K, and the sensitivity to temperature was higher than that to time,and the apparent coarsening temperature was 1 273 K. The classical Arrhenius growth model for austenite grain size was established: D=2.223×106exp[-132 086/(RT)]tn, with the activation energy Q=132.086 kJ/mol. The time exponent n approximately coincided the S-type function with the change of temperature, and the relevant mathematical equation was established: n=0.077 5+0.231 7/(1+10(1 326.73-T)×0.023 5),which was used to optimize the time exponent in the Arrhenius equation considering alloy-element. The calculated value of average austenite grain size was compared with the measured value after optimization, and the results show that the consistency of the model was better than that of the unoptimized model.
Key words:  gear steel    austenite grain growth    growth model    austenitizing temperature    time exponent
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TG142.1  
基金资助: 工业强基工程(招标编号:TC180A3Y1/分包号:14)
通讯作者:  wangmaoqiu@nercast.com   
作者简介:  杨少朋,2015年9月就读于昆明理工大学,2016—2017年在北京钢铁研究总院进行联合培养学习,于2017年6月毕业,获得工程硕士学位。现就读于北京钢铁研究总院,进修博士学位,主要从事合金结构钢的组织及性能研究。
王毛球,教授级高级工程师,博士研究生导师。长期从事合金结构钢领域研发工作,负责国家科研项目15项,发表学术论文150余篇,获国家发明专利15项,指导研究生20余人,是齿轮钢国家标准(GB/T 5216)和国家军用标准的主要起草人。在高强度钢的延迟断裂和疲劳破坏机理方面有较高的学术造诣:在国际上首次解释了局部氢浓度和局部应力在高强度钢延迟断裂过程中的作用;深入研究了微观组织对齿轮钢疲劳性能的影响规律,揭示了微合金化渗碳齿轮钢疲劳断裂机理。担任了 Metall. Mater. Trans. AMater. Sci. Eng. A、《金属学报》等知名学术期刊审稿专家,以及ISO16573国际标准技术专家。
引用本文:    
杨少朋, 尉文超, 胡芳忠, 王毛球, 汪开忠, 王自敏, 时捷. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183.
YANG Shaopeng, YU Wenchao, HU Fangzhong, WANG Maoqiu, WANG Kaizhong, WANG Zimin, SHI Jie. The Austenite Grain Growth Behavior of Low Carbon Gear Steel 18CrNiMo7-6. Materials Reports, 2021, 35(8): 8179-8183.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020030  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8179
1 Fernández J, Illescas S, Guilemany J M. Materials Letters,2007,61(11),2389.
2 Uhm S, Moon J, Lee C, et al. ISIJ International,2004,44(7),1230.
3 Li Z Q, Wen Z, Su F Y, et al. Journal of Materials Research,2016,31(14),2105.
4 Wang M, Cheng X C, Cheng S H, et al. Transactions of Materials and Heat Treatment,2016,37(4),243(in Chinese).
王猛,王晓晨,程四华,等.材料热处理学报,2016,37(4),243.
5 Maalekian M, Radis R, Militzer M, et al. Acta Materialia,2012,60(3),1015.
6 Annan K A, Siyasiya C Witness, Stumpf W E. ISIJ International,2018,58(2),333.
7 Fang W, Zhang C, Gou F, et al. Material Science & Engineering Technology,2020,51(2),230.
8 Luo X, Kang Y, Yang C, et al. In: The 7th International Conference on High Strength Low Alloy Steels. Hangzhou,2015,pp.297.
9 Priadi D, Napitupulu R A M, Siradj E S. Journal of Mining and Metallurgy, Section B: Metallurgy,2011,47(2),199.
10 Wu D, Wang F, Cheng J, et al. High Temperature Materials and Processes,2018,37(9-10),899.
11 Yang Q, Zhang L W, Zhang C, et al. Heat Treatment of Metals,2019,44(4),1(in Chinese).
杨清,张立文,张驰,等.金属热处理,2019,44(4),1.
12 Liu Z Y, Bao Y P, Wang M, et al. International Journal of Minerals, Metallurgy, and Materials,2019,26(3),282.
13 Chen R C, Li J J, Zheng Z Z, et al. Procedia Engineering,2017,207,663.
14 Lee S J. ISIJ International,2013,53(10),1902.
15 Illescas S, Fernández J, Guilemany J M. Materials Letters,2008,62(20),3478.
16 Gleiter H. Acta Metallurgica,1969,17(5),565.
17 Jacot A, Rappaz M. Acta Materialia,1999,47(5),1645.
18 Miyoshi E, Takaki T. Computational Materials Science,2016,112,44.
19 Simpson C J, Aust K T, Winegard W C. Metallurgical Transactions,1971,2(4),987.
20 Lee S J, Lee Y K. Materials & Design,2008,29(9),1840.
21 Lee S J, Matlock D K, Van T C J. Scripta Materialia,2011,64(9),805.
22 Zaccone M, Krauss G. Metallurgical Transactions A,1993,24(10),2263.
23 Jiao S, Penning J, Leysen F, et al. Steel research,2000,71(9),345.
[1] 王占花, 惠卫军, 陈祯, 张永健, 赵晓丽. 钒及奥氏体化温度对Mn-Cr系贝氏体型非调质钢过冷奥氏体连续冷却转变行为的影响[J]. 材料导报, 2020, 34(18): 18145-18151.
[2] 梁宇, 向嵩, 梁益龙, 杨明, 魏泽民, 熊虎, 李静. 原奥氏体晶粒尺寸对珠光体钢组织及韧性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 77-81.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed