Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4181-4185    https://doi.org/10.11896/cldb.19090224
  高分子与聚合物基复合材料 |
固液密度比对PMMA/HDPE悬浮液粘度的影响
梁捷1,2, 耿佃桥1,2, 张群1,2
1 东北大学材料电磁过程研究教育部重点实验室,沈阳 110819
2 东北大学冶金学院,沈阳 110819
Effect of Solid-Liquid Density Ratio on Viscosity of PMMA/HDPE Suspension
LIANG Jie1,2, GENG Dianqiao1,2, ZHANG Qun1,2
1 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 3439KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固液密度比是影响悬浮液粘度的重要参数,准确预测悬浮液的粘度对材料分选具有重要意义。本工作基于实验方法,采用不同密度的PMMA/HDPE颗粒组成两种悬浮液,研究了固液密度比对悬浮液粘度的影响。结果表明:在相同固体体积分数下,悬浮液的粘度随固液密度比的增加而降低;在不同固液密度比下,低固体体积分数下悬浮液的粘度增长速度低于高固体体积分数下的粘度增长速度;颗粒粒径越小,悬浮液的粘度随固液密度比的增加降低得越快。在实验条件范围内,对PMMA/HDPE两种悬浮液分别采用Batchelor模型和Leighton模型,建立了相应的修正模型,并验证修正模型的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁捷
耿佃桥
张群
关键词:  悬浮液  固液密度比  Batchelor模型  Leighton模型  粘度    
Abstract: The solid-liquid density ratio is a key parameter to affect the viscosity of suspension.It is of great significance to predict the viscosity of suspension for material flotation. Based on the experimental method, the effect of solid-liquid density ratio of two different densities PMMA/HDPE particle suspensions on the viscosity of the suspension is studied. The results show that under the same particle fraction, the viscosity of the suspension decreases with the increase of solid-liquid density ratio; and the viscosity growth rate under the low solid volume fraction is lower than the viscosity growth rate under the high solid volume fraction; the smaller the particle size, the viscosity of the suspension the faster the increase in the solid-liquid density ratio is reduced. Within the experimental conditions, the corresponding modified model is obtained by using the Batchelor model and the Leighton model for the PMMA/HDPE suspension, and the accuracy of the modified model is verified.
Key words:  suspension    solid-liquid density ratio    Batchelor model    Leighton model    viscosity
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  O373  
基金资助: 中央高校基本科研业务费专项资金(N180904007)
通讯作者:  neugeng@163.com   
作者简介:  梁捷,现在东北大学材料电磁过程研究教育部重点实验室攻读动力工程专业硕士学位,主要从事悬浮液流变特性研究。
耿佃桥,博士,副教授,长期从事多相流理论与应用、电磁冶金等方面研究。耿佃桥副教授共发表论文50余篇,相关技术已申请发明专利10余项。
引用本文:    
梁捷, 耿佃桥, 张群. 固液密度比对PMMA/HDPE悬浮液粘度的影响[J]. 材料导报, 2021, 35(4): 4181-4185.
LIANG Jie, GENG Dianqiao, ZHANG Qun. Effect of Solid-Liquid Density Ratio on Viscosity of PMMA/HDPE Suspension. Materials Reports, 2021, 35(4): 4181-4185.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090224  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4181
1 Guo H M, Liu B, Yang X J.Special Casting & Nonferrous Alloys, 2018, 38(6), 612 (in Chinese).
郭洪民, 刘斌, 杨湘杰. 特种铸造及有色合金, 2018, 38(6), 612.
2 Yang H J, Wei F Q, Hu K H.Journal of Mountain Science, 2018, 36(3), 382 (in Chinese).
杨红娟, 韦方强, 胡凯衡. 山地学报, 2018, 36(3), 382.
3 Lou J F, Weng Z X, et al.Polymer Materials Science & Engineering, 1994, (1), 84 (in Chinese).
楼剑锋, 翁志学, 等. 高分子材料科学与工程, 1994, (1), 84.
4 Cheng J, Grobner J, Hort N, et al. Measurement Science and Technology, 2014, 25(6), 1.
5 Zhao Y H. Electromagnetic control of molten metal flow during continuous casting. Master's Thesis, Dalian University of Technology, China, 2002 (in Chinese).
赵勇慧. 连铸过程中金属液流动的电磁控制. 硕士学位论文, 大连理工大学, 2002.
6 Lyu S, Zhang P, Qiu Z Z. Materials Reports, 2015, 29(S2), 372 (in Chinese).
吕珊, 张盼, 仇中柱. 材料导报, 2015, 29(专辑26), 372.
7 Zhang Y L, Li Q, An Z Q, et al.ISIJ International, 2015, 55(12), 2525.
8 Li D H, Cheng X F, Zhu X S, et al. Coal Engineering, 2016, 48(11), 120 (in Chinese).
李大虎, 程相锋, 朱学帅, 等. 煤炭工程, 2016, 48(11), 120.
9 Dabak T, Yucel O. Rheologica Acta, 1986, 25(5), 527.
10 Koos E, Linares-Guerrero E, Hunt M L, et al. Physics of Fluids, 2012, 24(1), 1.
11 Konijn B J, Sanderink O B J, Kruyt N P. Powder Technology, 2014, 266, 61.
12 An Z, Zhang Y, Li Q, et al. Powder Technology, 2018, 328, 199.
13 Krieger M, Dougherty J T.Journal of Rheology, 1959, 3(1), 137.
14 Chong J S, Christiansen E B, Bear A D. Journal of Applied Polymer Science, 1971, 15(8), 2007.
15 Abedian B, Kachanov M. International Journal of Engineering Science, 2010, 48(11), 962.
16 Yang Y R, Sun W C, Huang L Z, et el. Chemical Journal of Chinese Universities, 2012, 33(4), 818 (in Chinese).
杨燕瑞, 孙尉翔, 黄丽浈, 等. 高等学校化学学报, 2012, 33(4), 818.
17 Guan Y X, Zhao W L, Wang J R, et el.Materials Reports, 2009, 23(S2), 190 (in Chinese).
管延祥, 赵蔚琳,王建荣,等. 材料导报,2009, 23(专辑14), 190.
18 Einstein A.Annalen Der Physik, 1906, 324(2), 289.
19 Einstein A.Annalen Der Physik, 1911, 339(3), 591.
20 Batchelor G K.Journal of Fluid Mechanics Digital Archive, 1977, 83(1), 97.
21 Leighton D, Acrivos A.Chemical Engineering Science, 1986, 41(6), 1377.
22 Leighton D, Acrivos A. Journal of Fluid Mechanics, 1987, 181,415.
[1] 朱永刚, 左延红, 程桦, 邵正香. GMAW驼峰形成机理中熔池粘度影响的量化研究[J]. 材料导报, 2020, 34(Z2): 469-475.
[2] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[3] 于丽, 卞永宁, 刘杨, 徐新生. 低浓度水基多壁碳纳米管纳米流体的流变特性[J]. 材料导报, 2020, 34(22): 22010-22014.
[4] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 张宏, 刘新, 乔志. 沥青胶浆粘度及流变特性的影响因素研究[J]. 材料导报, 2019, 33(14): 2381-2385.
[7] 叶深杰, 余锋, 王克强, 王文锦, 陈忠仁. 嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 87-93.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed