Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4186-4193    https://doi.org/10.11896/cldb.19100066
  高分子与聚合物基复合材料 |
高各向异性十六酸/膨胀石墨定形相变储热材料的性能
吴韶飞1,2, 闫霆1,2, 蒯子函1,2, 潘卫国1,2
1 上海电力大学能源与机械工程学院,上海 200090
2 机械工业清洁发电环保技术重点实验室,上海 200090
Properties of High-anisotropy Hexadecanoic Acid/Expanded Graphite Form-stable Phase Change Heat Storage Materials
WU Shaofei1,2, YAN Ting1,2, KUAI Zihan1,2, PAN Weiguo1,2
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2 Key Laboratory of Clean Power Generation and Environmental Protection Technology in Mechanical Industry, Shanghai 200090, China
下载:  全 文 ( PDF ) ( 5475KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以十六酸 (Hexadecanoic acid, HA)作为基材,添加硫化膨胀石墨(Expanded graphite, EG)作为高导热支撑材料,采用改进的熔融共混-凝固定形法制备了高定形精度的HA/EG复合相变材料(Phase change materials, PCMs)样品。对不同参数的复合定形PCMs的热性能进行了系统的测试,考察了样品的微观结构、官能团分布和结晶相以及不同质量分数的EG和样品密度对定形PCMs热性能的影响规律。结果表明,HA与EG均匀混合,且随着HA质量分数和样品密度的增大,两相结合的饱满度提高;HA与EG之间未发生化学反应,仅通过物理作用将HA吸附至EG的多孔结构;纯HA和EG质量分数为30%的定形PCMs的熔融焓分别为275.35 kJ/kg和193.01 kJ/kg,熔点分别为59.53 ℃和61.08 ℃。当EG的质量分数为30%且样品密度为900 kg/m3时,HA/EG定形PCMs的水平热导率高达38.42 W/(m·K),相比于纯HA(0.162 W/(m·K))提高了约236倍;而其垂直热导率仅为2.68 W/(m·K),还不及水平热导率的1/14,表现出较高的各向异性。循环稳定性测试结果表明,EG的质量分数为24%和30%的各样品的泄漏量极小,其泄漏量低于0.85%,均未出现明显的泄漏,表现出良好的储/放热循环稳定性。HA/EG定形PCMs是一种性能优良的潜热储存材料,在太阳能热利用中具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴韶飞
闫霆
蒯子函
潘卫国
关键词:  十六酸  膨胀石墨  定形相变材料  各向异性  储热性能    
Abstract: Hexadecanoicacid (HA) was selected as the substrate and expanded graphite (EG) was adopted as the supporting material of high thermal conductivity. High form-stable precision HA/EG composite phase change materials (PCMs) were fabricated by the improved method of melting blend-solidification and form-stability. Thermal properties of form-stable PCMs samples with different parameters were systematically measured. The effects of microstructure, functional group distribution, crystalline phase, mass fraction of EG and sample density on the properties of form-stable PCMs were investigated by various instruments. The results showed that the blend of HA and EG were more uniformly and the combination degrees were enhanced with the increasing mass fraction and density of HA, which was absorbed into the porous structure of EG by physical interaction rather than chemical reaction. The melting enthalpy of pure HA and form-stable PCMs with the EG mass fraction and sample density of 30% and 900 kg/m3 were 275.35 kJ/kg and 193.01 kJ/kg, and the melting point of 59.53 ℃ and 61.08 ℃, respectively. The horizontal thermal conductivity of the latter was as high as 38.42 W/(m·K), which was about 236 times higher than that of pure HA (0.162 W/(m·K)). The vertical thermal conductivity of the latter was 2.68 W/(m·K), which was less than one-fourteenth of the horizontal, which showed high anisotropy. The cyclic stability test results of all the samples suggested that the EG mass fraction of 24% and 30% with samples had a slight leakage, which were lower than 0.85% and exhibited the wonderful cycle stability. HA/EG form-stable PCM was a kind of latent heat storage material with excellent performance, which had a broad application prospect in solar thermal utilization.
Key words:  hexadecanoic acid    expanded graphite    form-stable phase change materials    anisotropic    heat storage properties
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TK124  
  TB332  
基金资助: 国家自然科学基金(21546014);上海市科委科技攻关项目(18DZ1202502)
通讯作者:  yt81725@126.com;pweiguo@163.com   
作者简介:  潘卫国,上海电力大学教授,博士研究生导师,享受国务院政府特殊津贴。1994和1997年在浙江大学工程热物理专业获工学硕士和博士学位。2000年破格晋升教授,发表学术论文200余篇,申请国家发明专利70余项,出版中英文学术著作和教材6部。他领衔的团队主要研究电厂节能减排和可再生能源的高效利用等方向。
闫霆,上海电力大学讲师。2016年博士毕业于上海交通大学动力工程及工程热物理专业,2016至今为上海电力大学讲师。研究方向为热能储存及低品位热能的回收利用。在Energy Storage Materials、Rene-wable and Sustainable Energy Reviews、Energy、Renewable Energy等国际顶级期刊上发表论文10余篇,申请国家专利10余项
引用本文:    
吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
WU Shaofei, YAN Ting, KUAI Zihan, PAN Weiguo. Properties of High-anisotropy Hexadecanoic Acid/Expanded Graphite Form-stable Phase Change Heat Storage Materials. Materials Reports, 2021, 35(4): 4186-4193.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100066  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4186
1 Zhu N, Li S, Hu P, et al.Sustainable Cities and Society, 2018, 43, 251.
2 Magendran S S, Fahad Saleem A K, Mubarak N M, et al.Nano-Structures & Nano-Objects, 2019, 20, 100399.
3 Jiang F, Zhang L L, She X H, et al.Renewable and Sustainable Energy Reviews, 2020, 119, 109539.
4 Karthik M, Faik A, Blanco-Rodriguez P, et al.Carbon, 2015, 94, 266.
5 Wu S F, Yan T, Kuai Z H, et al.Energy Storage Materials, 2020, 25, 251.
6 Yang J, Tang L S, Bao R Y, et al.Solar Energy Materials and Solar Cells, 2018, 174, 56.
7 Narayanan S S, Kardam A, Kumar V, et al.Resource Efficient Technologies, 2017, 3, 272.
8 Chen D Z, Qin S Y, Tsui G C P, et al.Composites Part B: Engineering, 2019, 157, 239.
9 Yang H, Wang Y, Yu Q, et al.Applied Energy, 2018, 212, 455.
10 Ye R, Lin W, Yuan K, et al.Applied Energy, 2017, 193,325.
11 Wang H, Luo J, Yang Y, et al.Solar Energy, 2016, 139,591.
12 Huang X, Chen X, Li A, et al.Chemical Engineering Journal, 2019, 356,641.
13 Qi G Q, Yang J, Bao R Y, et al.Carbon, 2015, 88, 196.
14 Ling Z, Wang F, Fang X, et al.Applied Energy, 2015, 148, 403.
15 Ibrahim N I, Al-Sulaiman F A, Rahman S, et al.Renewable and Sustai-nable Energy Reviews, 2017, 74, 26.
16 Jiang Z, Ouyang T, Yang Y, et al.Materials & Design, 2018, 143,177.
17 Tian B, Yang W, Luo L, et al.Solar Energy, 2016, 127,48.
18 Yuan M, Ren Y, Xu C, et al.Renewable Energy, 2019, 136,211.
19 Huang Z, Luo Z, Gao X, et al.Applied Thermal Engineering, 2017, 122, 322.
20 Cheng F, Wen R, Huang Z, et al.Applied Thermal Engineering, 2017, 120, 107.
21 Li Z, Sun W G, Wang G, et al.Solar Energy Materials and Solar Cells, 2014, 128, 447.
22 Cai W, Yang W, Jiang Z, et al.Solar Energy Materials and Solar Cells, 2019, 194, 111.
23 Xue F, Lu Y, Qi X D, et al.Chemical Engineering Journal, 2019, 365, 20.
24 Li C, Zhang B, Xie B, et al.Sustainable Cities and Society, 2019, 44, 458.
25 Wu S,Li T X,Yan T,et al.CIESC Journal, 2015, 66 (12),5127(in Chinese).
仵斯, 李廷贤, 闫霆, 等. 化工学报, 2015, 66 (12), 5127.
26 Zhang L, Zhou K, Wei Q, et al.Applied Energy, 2019, 233-234,208.
27 Sum D, Wang L J.Construction and Building Materials, 2015, 101, 791.
28 Sahan N, Fois M, Paksoy H.Solar Energy Materials & Solar Cells, 2015, 137,61.
29 Liu Z Y, Zang C Y, Ju Z C, et al.Journal of Cleaner Production, 2020, 247, 119565.
30 Lin Y X, Zhu C Q, Alve G, et al.Applied Energy, 2018, 228, 1801.
31 Ji R, Wei S, Xia Y P, et al.Journal of Energy Storage, 2020, 27, 101134.
32 Sharma R K, Nanesan P G, Tyagi V V, et al.Applied Thermal Enginee-ring, 2016, 99, 1254.
33 Wang T, Wang S, Geng L, et al.Applied Energy, 2016, 179, 601.
34 Li T X, Lee J H, Wang R Z, et al.Energy, 2013, 55,752.
35 Wu S F, Yan T, Kuai Z H, et al. CIESC Journal, 2019, 70(9),3553(in Chinese).
吴韶飞, 闫霆, 蒯子函, 等. 化工学报, 2019, 70(9),3553.
36 Qin M M. Carbon-based composites with high thermal and mechanical properties by controlling their microstructures. Ph.D. Thesis, Tianjin University, China, 2017 (in Chinese).
秦盟盟. 碳复合材料的微观结构调控及性能研究. 博士学位论文,天津大学,2017.
37 Zhang Z, Yuan Y, Alelyani S, et al.Solar Energy, 2017, 155, 661.
38 Wu S, Li T X, Tong Z, et al.Advanced Materials, DOI: 10.1002/adma.201905099.
39 Li Y T, Yan H, Wang H T, et al.Chinese Journal of Materials Research, 2016, 30(12), 921(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 材料研究学报, 2016, 30(12), 921.
[1] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[2] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[3] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[4] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[5] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[6] 王佩祥, 冯秀娟, 朱易春, 蒋达华. 利用膨胀石墨改进十二水磷酸氢二钠复合相变材料的蓄热性能[J]. 材料导报, 2020, 34(18): 18044-18048.
[7] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[8] 罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
[9] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[10] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[11] 郭华超, 邓伟, 杨波, 黄国家, 李爽, 文芳. 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
[12] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[13] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[14] 马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
[15] 李蓉, 陈少平, 樊文浩, 陈彦佐, 徐礼彬, 王文先, 吴玉程. 孤对电子对碲热电传输性能的影响[J]. 材料导报, 2018, 32(21): 3726-3730.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed