Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11114-11120    https://doi.org/10.11896/cldb.19050155
  无机非金属及其复合材料 |
基于相场模拟的倾斜共晶生长研究进展
罗磊, 李向明, 魏岑, 王献
昆明理工大学材料科学与工程学院,昆明 650093
Research Progress on Tilted Eutectic Growth Based on Phase Field Simulation
LUO Lei, LI Xiangming, WEI Cen, WANG Xian
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 4890KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 共晶合金是工业上应用最为广泛的一类合金,其组织形态以两相或多相固态从液态中同时共生生长为主。共晶组织存在于许多重要的结构材料和功能材料的固液相变中,而倾斜共晶是共晶组织在诸多因素影响下形成的与热流方向呈一定倾斜角度的共晶组织。学者们探究了倾斜共晶生长的生长机理和共晶生长界面稳定性等重要问题,发现倾斜共晶组织有利于改善共晶组织的材料性能,对解决许多关于共晶组织的问题有指导意义。初步认为,具有各向异性的表面张力对倾斜共晶产生影响。由于相场法的固液界面序参数连续变化,解决了凝固过程中固液界面追踪困难的问题,因此可利用相场模拟法来研究倾斜共晶的形成机理。
   采用相场模拟法研究倾斜共晶的生长机理,主要是通过改变物理参数和相场参数来观察倾斜共晶组织形貌的变化规律,例如各向异性参数、温度梯度、凝固速度、对流情况、界面能比以及初始层片间距等诸多参数都对倾斜共晶的形貌演化具有一定的影响。通过相场模拟法对凝固过程中倾斜共晶生长进行研究可以得到每种材料对应的最佳物理参数和相场参数,这不仅在理论上更是在工业上上升了一个新的台阶。
   历经几十年的发展,相场法模型从单相到多相,从定性研究到定量研究,更是从二维相场模拟发展到三维相场模拟,相场模拟法越来越完善,对于凝固过程中组织形貌变化模拟结果也越来越接近实际情况。本文将从二维相场模拟与三维相场模拟出发,阐述了在不同维度下物理参数和相场参数分别对倾斜共晶组织形貌演化的影响。在二维相场模拟方面,学者们取得了一系列的突破,证明了各向异性和对流情况对倾斜共晶有一定的影响,初始层片间距会改变共晶的生长模式,温度梯度、界面能、凝固速度和扩散系数对共晶倾斜角度也有一定影响。在三维相场模拟方面,同样取得了一些成就,不同生长速度和弹性效应下,层片间距与过冷度之间的关系,各向异性和温度梯度对倾斜共晶组织形貌变化以及扩散系数和界面能对固液界面变化都有被研究。本文指出了当前研究存在的问题,并对未来研究工作作出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗磊
李向明
魏岑
王献
关键词:  倾斜共晶  相场模拟  各向异性  共晶  形貌演化    
Abstract: Eutectic alloys are the most widely used type of alloys in industry. Their microstructure is characterized by the simultaneous growth of two-phase or multi-phase solids from liquids. Its eutectic structure exists in the solid-liquid phase transition of many important structural and functional materials. And tilted eutectic is eutectic microstructure formed under the influence of many factors at a certain angle to the heat flow direction. Researchers began to explore the mechanism of tilted eutectic growth and the interface stability of eutectic growth. Tilted eutectic structure is beneficial to improve the material properties of eutectic structure, and has a guiding significance for solving many problems related to eutectic structure. It is believed that the surface tension with anisotropy has an effect on the production of tilted eutectic. Due to the order parameters continuous change of the solid-liquid interface in the phase field method, the problem of difficult tracking of solid-liquid interface during solidification is eliminated. The phase field simulation method is used to study the mechanism of tilted eutectic formation.
The phase field simulation method was used to study the tilted eutectic growth mechanism, mainly by changing the process parameters and phase field parameters to observe the variation of the tilted eutecticmiscrostructure. For example, anisotropic have certain influence on the morphological evolution of tlited eutectic, and other parameters such as temperature gradient, solidification rate, convection condition, interfacial energy ratio and initial lamellar spacing have an important influence on the morphological evolution of tilted eutectic. By simulating the growth of tilted eutectic in solidification process with phase field method, the optimal physical parameters and phase field parameters corresponding to each material can be obtained, which is a new step not only in theory but also in industry.
After decades of development, the phase field method has evolved from single-phase to multi-phase, from qualitative research to quantitative research, from two-dimensional phase simulation to three-dimensional phase field simulation. The phase field method simulation is getting more and more perfect. The simulation results of the microstructure change during solidification are getting much closer to the actual situation. In this paper, the effects of physical parameters and phase field parameters on the evolution of tilted eutectic microstructure in different dimensions are studied from the perspective of two-dimensional phase field simulation and three-dimensional phase field simulation. In the field of two-dimensional phase simulation, the scholars have made a series of breakthroughs, which prove that the anisotropy and convection have certain influence on the tilted eutectic. The initial lamellar spacing will change the eutectic growth mode. Temperature gradient, interface energy, solidification rate and diffusion coefficient also have a certain influence on the eutectic tilt angle. In the field of three-dimensional phase simulation, some achievements have also been made. The relationship between lamellar spacing and undercooling under different growth rates and elastic effects, anisotropy and temperature gradient on the changes of tilted eutectic microstructure, as well as the changes of diffusion coefficient and interface energy on the solid-liquid interface were have been studied. At the same time, there are still some problems in current research field, and the future research work is expected.
Key words:  tilted eutectic    phase field simulation    anisotropy    eutectic    morphology evolution
                    发布日期:  2020-05-13
ZTFLH:  TG141  
基金资助: 国家自然科学基金(51961018;51561016)
通讯作者:  lixm@kmust.edu.cn   
作者简介:  罗磊,2017年在中原工学院材料成型及控制过程获得学士学位。现为昆明理工大学大学材料科学与工程学院硕士研究生,在李向明教授的指导下进行研究。目前主要研究领域为倾斜共晶生长的机理。
李向明,昆明理工大学材料科学与工程学院教授、硕士研究生导师。2011年6月在北京科技大学材料加工工程专业取得博士学位。2011年七月进入昆明理工大学材料科学与工程学院,2019年8月被评选为教授。主要从事有色金属熔炼与成形技术,热加工过程中的模拟仿真,多孔金属材料制备的研究工作。近年来发表论文30余篇,包括Journal of Crystal Growth和 Journal of Applied Physics等。
引用本文:    
罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
LUO Lei, LI Xiangming, WEI Cen, WANG Xian. Research Progress on Tilted Eutectic Growth Based on Phase Field Simulation. Materials Reports, 2020, 34(11): 11114-11120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050155  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11114
1 Vernede S, Dantzig J, Rappz M.Acta Materialia, 2009, 57(3), 1554.
2 Jackson K A, Hunt J D.Dynamics of Curved Fronts, 1988, 236(8), 363.
3 Akamatsu S, Plapp M.Materials Science, 2016, 20(1), 46.
4 Akamatsu S, Faivre G, Plapp M, et al. Materials Transactions A, 2004, 35(6), 1815.
5 Mccathy C, Cooper R F, Kirby S H, et al. American Mineralogist, 2007, 92(10), 1550.
6 Quenisset J M, Naslain R.Journal of Crystal Growth, 1981, 54(3), 465.
7 Perrut M, Parisi A, Akamatsu S, et al. Acta Materialia, 2010, 58(5), 1761.
8 Ludwig A, Leibbrandt S.Materials Science Engineering A, 2004, 375(1), 540.
9 Friak M, Hickel T, Grabowski B, et al. European Physical Journal Plus, 2011, 126(10), 1.
10 Kurz W.Metallurgical Transactions A, 1991, 22(12), 3051.
11 Trivedi R, Lipton J, Kurz W.Acta Metallurgica, 1987, 35(4), 965.
12 Magnin P, Trivedi R.Acta Metallurgica, 1991, 39(4), 453.
13 Leonhardt M, Loser W, Lindenkreuz H G.Materials Science Engineering A,1999, 271(1), 31.
14 Mcdonald S D, Nogita K, Dahle A K.Acta Materialia, 2004, 52(14), 4273.
15 Leonhardt M, Loser W, Arnold B, et al. Journal of Materials Science Letters, 1997, 16(16), 1366.
16 Ginzburg V L, Landau L D.On Superconductivity and Superfluidity, Springer Berlin Heidelberg, Germany, 2009.
17 Strang G, Fix G J, Griffin D S.Mathematics of Computation, 1974, 41(1), 115.
18 Caginalp G. Archive for Rational Mechanics and Analysis, 1986, 92(3), 205.
19 Wheeler A A, Boettinger W J, Mcfadden G B.Physical Review A, 1992, 45(10), 7424.
20 Kobayashi R.Physica D, 1993, 63(3), 410.
21 Warren J A, Boettinger W J.Acta Metallurgica, 1995, 43(2), 689.
22 Steinbach I, Pezzolla F, Nestler B, et al. Physica D, 1996, 94(3), 135.
23 Nestler B, Wheeler A A.Physical D, 2000, 138(1), 114.
24 Apel M, Boettinger B, Diepers H J, et al. Journal of Crystal Growth, 2002, 237(1), 154.
25 Karma A.Physical Review E, 1994, 49(3), 2245.
26 Plapp M, Karma A.Physical Review E, 2002, 66(1), 061608.
27 Lewis D, Warren J, Boettinger W, et al. JOM, 2004, 56(4), 34.
28 Zhu Y C, Yang G C, Wang J C, et al. Chinese Journal of Nonferrous Metals, 2005, 35(18), 4888.
29 Green J R, Jimack P K, Mullis A M.Metallurgical Materials Transactions A, 2007, 38(7), 1426.
30 Kundin J, Kumar R, Schlieter A.Computational Materials Science, 2012, 63, 319.
31 Akamatsu S, Bottin R S, Serefoglu M, et al. Acta Materialia, 2012, 60(6), 3206.
32 Xu X H, Chen M W. Surface Review Letters, 2018, DOI: 10.1142/S0218625X18502165.
33 Ghosh S, Choudury A, Plapp M, et al. Physical Review E, 2015, 91(2), 022407.
34 Ghosh S, Plapp M. Transactions of the Indian Institute of Metals, 2015, 68(6), 1235.
35 Lahiri A, Choudhury A.Transactions of the Indian Institute of Metals, 2015, 68(6), 1053.
36 Hoffman D W, Cahn J W.Surface Science, 1972, 31, 368.
37 Steinbach I, Pezzolla F, Nestler B, et al. Physica D, 1996, 94(3), 135.
38 Hotzer J, Steinmetz P, Jainta M, et al. Acta Materialia, 2016, 106(16), 249.
39 Hotzer J, Jainta M, Steinmetz P, et al. Acta Materialia, 2015, 93, 194.
40 Wheeler A A, McFadden G B, Boettinger W J.Proceedings of the Royal Society A, 1996, 452(1946), 495.
41 Kim S G, Kim W T, Suzuki T, et al. Journal of Crystal Growth, 2004, 261(1), 135.
42 Collins J B, Levine H.Physical Review B, 1985, 31(9), 6119.
43 Caginalp G.Physical Review A, 1989, 39(11), 5887.
44 Fife P C, Gill G S.Physics Review A, 1991, 43(2), 843.
45 Apel M, Boettger B, Diepers H J, et al. Journal of Crystal Growth, 2002, 237(1), 154.
46 Ode M, Sasajima N, Yamada Y, et al. International Journal of Thermophysics, 2011, 31(11), 2610.
47 Lahiri A, Tiwary C, Chattopadhyay K, et al. Computational Materials Science, 2017, 130, 109.
48 Ratkai L, Toth G I, Kornyei L, et al. Journal of Materials Science, 2017, 52(10), 5544.
49 Zhang A, Gou Z P, Xiong S M.China Foundry, 2017, 14(5), 373.
50 Zhang A, Guo Z, Xiong S M.Physics Review E, 2018, 97(5), 053302.
51 Jackson K A, Uhlmann D R, Hunt J D.Journal of Crystal Growth, 1967, 1(1), 1.
52 Siquieri R, Emmerich H.Philosophical Magazine, 2011, 91(1), 45.
53 Li X Z, Liu D M, Sun T, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(2), 0.
54 Hotzer J, Steinmetz P, Jainta M, et al. Acta Materialia, 2016, 106(16), 249.
55 Noubary K D, Kellner M, Steinmetz P, et al. Computional Materials Science, 2017, 138, 403.
56 Steinmetz P, Kellner M, Hotzer J, et al. Metallurgical Materials Transactions B, 2017, 1.
57 Park Y M, Lee J S.Journal of Differential Equations, 1978, 27(2), 266.
58 Bazilevs Y, Hughes T J R.Computers Fluids, 2007, 36(1), 12.
59 Makov G, Payne M C.Physics Review B, 1995, 51(7), 4014.
60 Himemiya T, Umeda T.Materials Transactions, 1999, 40(7), 665.
61 Himemiya T.Materials Transactions, 2000, 41(3), 437.
62 Yang Y J, Yan B.Acta Metallurgica Sinica, 2010, 46(7), 781 (in Chinese).
杨玉娟, 严彪.金属学报, 2010, 46(7), 781.
63 Yan Y J, Yan B.Science in China, 2011, 54(5), 866.
64 Yan Y J, Yan B, Zhang Y X, er al.Acta Physica Sinica, 2009, 58(1), 650 (in Chinese).
杨玉娟, 王锦程, 张玉祥, 等.物理学报, 2009, 58(1), 650.
65 Perrut M, Akamatus S, Bottin R S, et al. Physical Review E, 2009, 79(1), 032602.
66 Perrut M, Parisi A, Akamatus S, et al. Acta Materialia, 2010, 58(5), 1761.
67 Zhang A, Guo Z, Xiong S M.Journal of Applied Physics, 2017, 121(12), 125101.
68 Ravash H, Vlegels J, Moelans N.Journal of Materials Science, 2017, 52(24), 13852.
69 Ebrahimi Z, Rezendeh J.International Journal of Modeling Simulation and Scientific Computing, 2013, 4(1), 1250024.
[1] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[2] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[3] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[4] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 陈钢, 雷玉成, 鞠娜, 朱强, 王丹, 李天庆. 铅铋共晶合金的流动速度对CLAM钢腐蚀行为的影响[J]. 材料导报, 2019, 33(22): 3772-3776.
[7] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[8] 鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493.
[9] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[10] 肖龙仁, 雷玉成, 朱强, 李天庆, 陈钢, 罗梦, 赵军, 陈文彬. 不同合金成分的T91/316L焊缝在550 ℃高流速液态铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(11): 1805-1812.
[11] 秦博, 付晓刚, 马浩然, 张金权, 任丽霞, 龙斌. 铅铋合金气相氧含量控制初步实验研究[J]. 材料导报, 2019, 33(11): 1821-1824.
[12] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[13] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[14] 李勇, 朱靖, 王莹, 李焕, 赵亚茹. 定向凝固Cu-0.33Cr-0.1Ti亚共晶合金中带状组织的形成机理[J]. 《材料导报》期刊社, 2018, 32(4): 602-605.
[15] 马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed