Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 602-605    https://doi.org/10.11896/j.issn.1005-023X.2018.04.019
  材料研究 |
定向凝固Cu-0.33Cr-0.1Ti亚共晶合金中带状组织的形成机理
李勇, 朱靖, 王莹, 李焕, 赵亚茹
江西理工大学工程研究院,赣州 341000
Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy
LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru
Institute of Engineering Research, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 1906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 考察了Cu-0.33Cr-0.1Ti亚共晶合金在凝固速率为20 μm/s下的定向凝固组织,利用SEM和EDS对带状组织的形貌和成分进行了分析,并从动力学、形核条件等方面探讨了带状组织形成的原因和机理。结果表明,该带状组织是由单相胞状α-Cu相与(α-Cu)+(β-Cr)共晶组织交替生长形成,带状组织的产生与定向凝固界面前沿的溶质分布有关,即主要受溶质浓度、有效溶质系数和凝固速率等因素的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李勇
朱靖
王莹
李焕
赵亚茹
关键词:  定向凝固  Cu-0.33Cr-0.1Ti  亚共晶合金  带状组织  溶质分布    
Abstract: The directional solidification structures of the Cu-0.33Cr-0.1Ti hypoeutectic alloy at solidified rate of 20 μm/s were investigated. The morphology and composition of the band-like microstructure were analyzed by means of SEM and EDS. The reason and mechanism of formation of band-like microstructure were discussed based on the dynamics, nucleation conditions. The results showed that the band-like microstructures were formed by the alternation of the monocrystalline α-Cu phase and the (α-Cu)+(β-Cr) eutectic structure. The formation of the band-like microstructure was related to the solute distribution at the front of solid-liquid interface, which was mainly affected by solute concentration, effective solute coefficient and solidification rate and other factors.
Key words:  directional solidification    Cu-0.33Cr-0.1Ti    hypoeutectic alloy    band-like microstructure    solute distribution
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG113.12  
基金资助: 国家自然科学基金(51561007; 51261007); 江西省自然科学基金(20161BBM26036); 江西理工大学青年英才支持计划资助
作者简介:  李勇:男,1975年生,博士,副教授,研究方向为铜基复合材料、定向凝固技术及理论研究 E-mail:liyong0248@163.com
引用本文:    
李勇, 朱靖, 王莹, 李焕, 赵亚茹. 定向凝固Cu-0.33Cr-0.1Ti亚共晶合金中带状组织的形成机理[J]. 《材料导报》期刊社, 2018, 32(4): 602-605.
LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy. Materials Reports, 2018, 32(4): 602-605.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.019  或          https://www.mater-rep.com/CN/Y2018/V32/I4/602
1 Dobler S, Lo T S, Plapp M, et al. Peritectic coupled growth[J].Acta Materialia,2004,52(9):2795.
2 Su Yanqing, Luo Liangshun, Li Xinzhong,et al. Well-aligned in situ composites in directionally solidified Fe-Ni peritecticsystem[J].Applied Physics Letters,2006,89(23):272.
3 Luo Liangshun, Zhang Yumin, Su Yanqing, et al. Convection effects and banding structure formation mechanism during directional solidification of peritectic alloys Ⅰ. Experimental result[J].Acta Metallurgica Sinica,2011,47(3):275(in Chinese).
骆良顺,张宇民,苏彦庆,等.包晶合金定向凝固过程中的对流效应及带状组织形成机制Ⅰ.实验结果[J].金属学报,2011,47(3):275.
4 Zhong Hong, Li Shuangming, Liu Lin, et al. Low velocity coupled growth and banded structure of peritectic alloys under directional solidification[J].Materials Review,2006,20(9):98(in Chinese).
钟宏,李双明,刘林,等.定向凝固包晶合金低速共生生长与带状组织[J].材料导报,2006,20(9):98.
5 Guo Jingjie, Li Xinzhong, Su Yanqing, et al. Formation mechanism of band structure and phase selection during directional solidification of peritecticalloys Ⅱ.Phase selection[J].Acta Metallurgica Sinica,2005,41(6):599(in Chinese).
郭景杰,李新中,苏彦庆,等.定向凝固包晶合金带状组织的形成机制及相选择Ⅱ.相选择[J].金属学报,2005,41(6):599.
6 Li Xinzhong, Guo Jingjie, Su Yanqing, et al. formation mechanism of band structure and phase selection during directional solidification of peritectic alloys Ⅰ. Formation mechanism of band structure[J].Acta Metallurgica Sinica,2005,41(6):593(in Chinese).
李新中,郭景杰,苏彦庆,等.定向凝固包晶合金带状组织的形成机制及相选择Ⅰ.带状组织的形成机制[J].金属学报,2005,41(6):593.
7 Li Xiaoli, Li Jinshan, Tang Ling, et al. Solidification distance of planar interface and interface instability in directional solidification of Cu-Cr alloy[J].Rare Metal Materials and Engineering,2008,37(4):613(in Chinese).
李晓历,李金山,唐玲,等.定向凝固下Cu-Cr合金初始凝固的平界面距离及界面失稳[J].稀有金属材料与工程,2008,37(4):613.
8 Li Xiaoli, Li Jinshan, Hu Rui, et al. Band-like microstructures and formation mechanism in directionally solidified Cu-1.0%Cr alloy[J].Acta Metallurgica Sinica,2007,43(12):1256(in Chinese).
李晓历,李金山,胡锐,等.定向凝固Cu-1.0%Cr合金中带状组织及其形成机制[J].金属学报,2007,43(12):1256.
9 Liu Tong, Luo Liangshun, Zhang Yanning, et al. Microstructure evolution and growth behaviors of faceted phase in directionally solidified Al-Y alloys Ⅱ. Microstructure evolution of directionally solidified Al-53%Y peritectic alloy[J].Acta Metallurgica Sinica,2016,52(7):866(in Chinese).
刘桐,骆良顺,张延宁,等.定向凝固Al-Y合金组织演化规律及小平面相生长Ⅱ.Al-53%Y包晶合金组织演化规律[J].金属学报,2016,52(7):866.
10 Hu Xiaowu, Li Shuangming, Ai Fanrong, et al. Banding structure formation during directional solidification of Pb-Bi peritecticalloys[J].Transactions of Nonferrous Metals Society of China (English Edition),2012,22(9):2131(in Chinese).
胡小武,李双明,艾凡荣,等.Pb-Bi包晶合金定向凝固过程中带状组织的形成[J].中国有色金属学报(英文版),2012,22(9):2131.
[1] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[2] 吴护林, 李忠盛, 金应荣, 贺毅. 弹簧应力松弛反常载荷损失及原因分析[J]. 材料导报, 2023, 37(23): 22090089-6.
[3] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[4] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[5] 王妍, 崔春娟, 张凯, 邓力, 刘薇, 刘跃, 赵亚男, 武重洋. 定向凝固金属间化合物的研究进展[J]. 材料导报, 2022, 36(24): 20100245-8.
[6] 蒋健博, 黄以平, 李少林, 刘海浪, 彭治国, 谭毅. 电子束诱导定向凝固对硅中Fe杂质分凝的影响[J]. 材料导报, 2020, 34(Z2): 173-176.
[7] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[8] 张朝磊, 胡佳丽, 李戬, 苗红生, 刘雅政. 胀断连杆用非调质钢C70S6的材料特性及组织性能控制[J]. 材料导报, 2020, 34(Z1): 444-447.
[9] 刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
[10] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[11] 马文彬, 郭京京, 骆红云, 唐君, 杨晓光. 低塑性加工对定向凝固镍基合金DZ125高温氧化性能的影响[J]. 材料导报, 2020, 34(10): 10093-10097.
[12] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[13] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[14] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[15] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed