Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22010-22014    https://doi.org/10.11896/cldb.19070053
  无机非金属及其复合材料 |
低浓度水基多壁碳纳米管纳米流体的流变特性
于丽1, 卞永宁1, 刘杨2, 徐新生1
1 大连理工大学工程力学系,工业装备结构分析国家重点实验室,大连 116024
2 大连理工大学海洋科学与技术学院,盘锦 124221
Rheological Characteristics of Low Concentrated MWCNT/Water Nanofluids
YU Li1, BIAN Yongning1, LIU Yang2, XU Xinsheng1
1 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
2 School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
下载:  全 文 ( PDF ) ( 3489KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对纳米流体流变特性的研究有助于深入理解纳米流体的能量输运机理。本工作利用高级旋转流变仪,研究了MWCNT(Multi-walled carbon nanotube)纳米粒子体积分数为0.004 7%、0.023 8%、0.047%、0.071 4%、0.095%的自来水基(tap)和蒸馏水基(DI)多壁碳纳米管(MWCNT)纳米流体在278~353 K温度范围内的粘度、触变性、粘度滞后的流变特性。结果表明:纳米流体粘度均高于基液水的粘度,其随纳米粒子体积分数的增大和温度的降低而增大;纳米流体相对粘度不受温度影响;MWCNT/水纳米流体从牛顿型流体转变为剪切稀化非牛顿流体的临界浓度为0.047%,其流动特性可用幂律模型来描述;当温度低于335 K时,MWCNT/水的流变特性不受基液性质的影响且无触变性;MWCNT/tap纳米流体出现高温引起的粘度滞后现象;基于实验数据,取得一个更准确的预测MWCNT/水纳米流体粘度的方程,为相关流动与热质传递模拟提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于丽
卞永宁
刘杨
徐新生
关键词:  纳米流体  碳纳米管  非牛顿流体  粘度  粘度滞后现象    
Abstract: The investigation of the rheological properties of nanofluids helps to understand the energy transport mechanism of nanofluids. The rheological properties such as viscosity, thixotropy, and viscosity hysteresis phenomenon of MWCNT/tap and MWCNT/distilled (DI) water nanofluids are experimentally studied at five different low volume fractions (0.004 7%, 0.023 8%, 0.047%, 0.071 4%, 0.095%) by using an advanced rheometer. The results show that the viscosity of nanofluids is higher than that of the base liquid, which increases with the solid volume fraction increasing and temperature decreasing; however, the relative viscosity is independent of temperature. Furthermore, it is found that the concentration of 0.047% is regarded as a critical point suggesting the transition from Newtonian fluid to shear thinning non-Newtonian fluid and the flow characteristics could be described very well by the power-law model. The rheological properties of MWCNT/water are not affected by the properties of the base liquid and there is no thixotropic behavior when the temperature is lower than 335 K. Besides, temperature sweep tests demonstrate that the viscosity hysteresis phenomenon caused by high temperature is observed in the case of MWCNT/tap nanofluid. Finally, based on the experimental data, a new and accurate correlation is proposed to predict the relative viscosity of MWCNT/water which can provide a reference for the work associated with the fluid flow simulation of nanofluids.
Key words:  nanofluids    MWCNT    non-Newtonian fluid    viscosity    viscosity hysteresis phenomenon
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  O373  
基金资助: 国家重点研发计划(2019YFB1504301);国家自然科学基金(11972105;11172059)
通讯作者:  ybian@dlut.edu.cn   
作者简介:  于丽,大连理工大学博士研究生,从事纳米流体以及非牛顿流体流变特性与热质传递特性的研究。卞永宁,教授,硕士研究生导师。研究方向为流体流动的不稳定性理论、质量热量传递过程的强化技术以及非牛顿流体的流变特性测量及流动特性。
引用本文:    
于丽, 卞永宁, 刘杨, 徐新生. 低浓度水基多壁碳纳米管纳米流体的流变特性[J]. 材料导报, 2020, 34(22): 22010-22014.
YU Li, BIAN Yongning, LIU Yang, XU Xinsheng. Rheological Characteristics of Low Concentrated MWCNT/Water Nanofluids. Materials Reports, 2020, 34(22): 22010-22014.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070053  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22010
1 Liu Z H, Liao L. International Journal of Thermal Sciences, 2010, 49, 2331.2 Yang J C, Li F C, He Y R, et al. International Journal of Heat and Mass Transfer, 2013, 62, 303.3 Steele A, Bayer I S, Loth E. Carbon, 2014, 77, 1183.4 Yang J C, Xu H P, Li F C. Chemical Industry and Engineering Society of China, 2014,65(S1),199 (in Chinese).阳倦成,徐鸿鹏,李凤臣.化工学报, 2014, 65(S1), 199.5 Sidik N A C, Yazid M N A W, Samion S. International Journal of Heat and Mass Transfer, 2017, 111, 782.6 Huminic G, Huminic A. Renewable and Sustainable Energy Reviews, 2012, 16(8), 5625.7 Alawi O A, Sidik N A C, Mohammed H A, et al. International Communications in Heat and Mass Transfer, 2014, 56, 50.8 Akhgar A, Toghraie D. Powder Technology, 2018, 338, 806.9 Esfe M H, Esfandeh S, Amiri M K, et al. Powder Technology, 2019, 342, 998.10 Das P K. Journal of Molecular Liquids, 2017, 240, 420.11 Khodadadi H, Aghakhani S, Majd H, et al. International Journal of Heat and Mass Transfer, 2018, 127, 997.12 Ahmadi Nadooshan A, Eshgarf H, Afrand M. Powder Technology, 2018, 338, 342.13 Barnoon P, Toghraie D. Powder Technology, 2018, 325, 78.14 Diao Y H, Li C Z, Zhang J, et al. Powder Technology, 2017, 305, 206.15 Prabhavathi B, Sudarsana Reddy P, Bhuvana Vijaya R. Powder Techno-logy, 2018, 340, 253.16 Lotfi R, Rashidi A M, Amrollahi A. International Communications in Heat and Mass Transfer, 2012, 39,108.17 Yazid M N A W, Sidik N A C, Yahya W J. Renewable and Sustainable Energy Reviews, 2017, 80, 914.18 Ahmadi Nadooshan A, Eshgarf H, Afrand M. Powder Technology, 2018, 338, 342.19 Shahsavani E, Afrand M, Kalbasi R. International Journal of Thermal Sciences, 2018, 131, 1177.20 Phuoc T X, Massoudi M, Chen R. International Journal of Thermal Sciences, 2011, 50, 12.21 Garg P, Alvarado J L, Marsh C, et al. International Journal of Heat and Mass Transfer, 2009, 52, 5090.22 Aladag B, Halelfadl S, Doner N,et al. Apply Energy, 2012, 97, 876.23 Halelfadl S, EstelléP, Aladag B,et al. International Journal of Thermal Sciences, 2013, 71, 111.24 Halelfadl S, Maré T, Estellé P. Experimental Thermal and Fluid Science, 2014, 53, 104.25 Sadri R, Ahmadi G, Togun H, et al. Nanoscale Research Letter, 2014, 9, 1.26 Estelle P, Halelfadl S, Doner N,et al. Current Nanoscience, 2013, 9, 225.27 Pastoriza-Gallego M J, Lugo L, Legido J L, et al. Nanoscale Research Letter, 2011, 6, 560.28 Nguyen C T, Desgranges F, Roy G, et al. International Journal of Heat and Fluid Flow, 2017, 28, 1492.29 Nguyen C T, Desgranges F, Galanis N, et al. International Journal of Thermal Sciences, 2008, 47, 103.30 Said Z, Saidur R, Hepbasli A, et al. International Communications in Heat and Mass Transfer, 2014, 58, 85.31 Yu L, Bian Y N, Liu Y, et al. International Journal of Heat and Mass Transfer, 2019, 135, 175.32 Murshed S M S, Estellé P. Renewable and Sustainable Energy Reviews, 2017, 76, 1134.33 Brenner H, Condiff D W. Journal of Colloid and Interface Science, 1974, 47, 199.34 Shi Q J, Liu Y F, Chen F, et al. Physics and Chemistry of Liquids, 2019, 57, 37.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[3] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[4] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[5] 杨德龙, 季旭, 陈颖, 王聪, 韩景阳, 徐海洋, 廖超. 纳米材料在太阳能蒸馏中的应用研究进展[J]. 材料导报, 2020, 34(21): 21115-21124.
[6] 张奇锋, 王忠, 贾仕奎, 赵中国, 曹乐, 陈立贵. CNTs/PBS复合材料的制备及性能研究[J]. 材料导报, 2020, 34(20): 20152-20158.
[7] 侯桂香, 谢建强, 姚少巍, 韩卿. 环氧化修饰碳纳米管对邻甲酚醛环氧树脂性能的影响[J]. 材料导报, 2020, 34(20): 20165-20170.
[8] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[9] 孙成祥, 李阳, 徐迟, 陆明月, 戴振东. 碳纳米管阵列仿生黏附受静电作用影响的研究进展[J]. 材料导报, 2020, 34(19): 19050-19060.
[10] 王瑞, 李聃阳, 刘星, 方纾, 伏立松, 熊维成. 氧等离子体处理碳纳米管对剪切增稠液增强芳纶织物防刺性能的影响[J]. 材料导报, 2020, 34(18): 18188-18193.
[11] 李锐, 孙晓刚, 黄雅盼, 魏成成, 梁国东, 邹婧怡, 徐宇浩, 何强. 三维多孔碳纳米片PC/CNT夹层高性能锂硫电池[J]. 材料导报, 2020, 34(16): 16006-16010.
[12] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[13] 阮超, 陈名海. 电弧放电法制备碳纳米管研究进展[J]. 材料导报, 2020, 34(11): 11129-11136.
[14] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[15] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed