Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21115-21124    https://doi.org/10.11896/cldb.19070225
  无机非金属及其复合材料 |
纳米材料在太阳能蒸馏中的应用研究进展
杨德龙1,2, 季旭1, 2,*, 陈颖1, 王聪1,2, 韩景阳1,2, 徐海洋1,2, 廖超1,2
1 云南师范大学太阳能研究所,昆明 650500;
2 云南师范大学太阳能热工实验室,昆明 650500
Progress on the Application of Nanomaterials in Solar Distillation
YANG Delong1,2, JI Xu1,2,*, CHEN Ying1, WANG Cong1,2, HAN Jingyang1,2, XU Haiyang1,2, LIAO Chao1,2
1 Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, China
2 Thermal Engineering Laboratory, Yunnan Normal University, Kunming 650500, China
下载:  全 文 ( PDF ) ( 11596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能海水淡化是缓解世界淡水资源压力的有效方法之一,在传统太阳能海水淡化系统中,蒸馏效率低是限制其发展的主要因素。纳米材料具有独特的光学、热力学特性,能够吸收太阳辐射并将其转化为热能,被广泛用于太阳能蒸馏系统来增强光-热-汽转换率。近年来,受益于纳米流体及界面光热技术,太阳能蒸馏技术发展迅速。
固态纳米颗粒的导热系数远大于液态基质,故以纳米流体代替传统流体作为传热工质用于太阳能蒸馏系统。近年的研究中,纳米流体用于被动、主动式蒸馏系统中均显示出较强的吸光集热性能,蒸馏产水量提高25%以上,最大提高约130%;纳米流体具有独立产蒸汽能力,在太阳光模拟器下,流体迅速升温并产生蒸汽,热利用效率高达73%,产水率相比纯水增加近50%。
界面光热技术是指在界面材料作用下,纳米吸收体吸收太阳光作用于水与空气界面的薄层水分子,而不是整个待蒸发水体。可用来作为界面光热材料的主要有等离激元材料、独立纳米凝胶材料、金属或金属氧化物涂层的复合材料、碳基复合材料、聚离子液体衍生膜及部分可降解有机材料。在界面光热蒸馏系统中,因材料强吸光特性及多孔特性,显著提高界面热利用效率及蒸馏产水速率。其中碳基材料因制备成本低、容易改性、无毒等优势应用最为广泛,开发环保型支撑结构是美丽家园建设下界面蒸馏技术发展的重要研究课题。
本文综述了近年纳米材料在太阳能蒸馏中的应用研究进展,分别归纳了纳米流体技术及界面光热技术用于太阳能蒸馏系统的主要研究成果,简要介绍了各种材料的工作原理及优劣势,并展望了其发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨德龙
季旭
陈颖
王聪
韩景阳
徐海洋
廖超
关键词:  太阳能蒸馏  纳米材料  海水淡化  纳米流体  界面光热技术    
Abstract: Solar desalination is one of the effective methods to alleviate the pressure of freshwater resources in the world. The low distillation efficiency is the main factor limiting its development in the traditional solar desalination system. Nanomaterials have been widely used in solar distillation systems to enhance the conversion rate of light-heat-steam due to their have unique optical and thermodynamic properties, which can absorb solar rediation and convert it into heat. In recent years, solar distillation technology has developed rapidly because of the nanofluids and interface photothermal technology.
Nanofluids are used to replace the traditional fluid as heat transfer working fluid in solar distillation system because the thermal conductivity of solid nanoparticles is much larger than that of liquid matrix. Recent studies reveal that nanofluids show strong absorption and heat collection performance when used in passive and active distillation systems, the distillation water production increase by more than 25% in those systems, and the maximum increase is about 130%. In addition, the nanofluids have an independent steam generation capacity. The fluids heat up rapidly and generate steam using the sunlight simulator. The thermal utilization efficiency is up to 73%, and the water yield is nearly 50% higher than that of pure water.
Interfacial photothermal technology refers to that nano-absorbers absorb sunlight and act on thin layer of water molecules at the interface between water and air under the action of interfacial materials, instead of the whole water body to be evaporated. The main materials that can be used as interface photothermal materials are as follows: plasma, nanostructured gel, composite materials with metal or metal oxide coatings, carbon matrix composites, ionic liquid membranes and some degradable organic materials. In the interfacial photothermal distillation system, the interfacial heat utilization efficiency and water production rate were significantly increased due to the strong absorption and porous properties of materials. Among them, carbon-based materials are widely used because of their low cost, easy modification, non-toxicity and other advantages. Besides, developing environmentally friendly supporting structures is an important research area for the development of interfacial distillation.
In this paper, the application and research progress of nanomaterials in solar distillation in recent years are reviewed. The main results of nano-fluid technology and interfacial photothermal technology in solar distillation system are summarized respectively. At the same time, the working principles, advantages and disadvantages of various materials are briefly introduced and their development prospects are prospected.
Key words:  solar distillation    nanomaterials    seawater desalination    nanofluids    interfacial photothermal technology
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  P747.14  
基金资助: 国家自然科学基金(51766018);云南省大学生创新创业训练计划建设项目(201810681011)
作者简介:  杨德龙,2018年7月毕业于云南师范大学能源与环境科学学院,获得工学学士学位,同年“4+2”推免本校太阳能研究所攻读硕士学位,在季旭教授指导下进行研究,目前主要研究领域为太阳能海水淡化。
季旭,教授,博士研究生导师,云南省中青年学术技术带头人,云南省高校卓越青年教师。2009年于北京大学信息科学技术学院获得博士学位,之后在新加坡南洋理工大学作为研究员工作。目前为云南师范大学能源与环境科学学院教授,主要从事太阳能利用、太阳聚光技术、太阳能制冷、直接蒸发空调、太阳能蒸汽产生等方面的研究。
引用本文:    
杨德龙, 季旭, 陈颖, 王聪, 韩景阳, 徐海洋, 廖超. 纳米材料在太阳能蒸馏中的应用研究进展[J]. 材料导报, 2020, 34(21): 21115-21124.
YANG Delong, JI Xu, CHEN Ying, WANG Cong, HAN Jingyang, XU Haiyang, LIAO Chao. Progress on the Application of Nanomaterials in Solar Distillation. Materials Reports, 2020, 34(21): 21115-21124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070225  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21115
[1] He S, Chen C, Kuang Y, et al.Energy & Environmental Science, 2019, 12(5),1558.
[2] Service R F. Science, 2006, 313(5790),1088.
[3] Kalogirou S A.Progress in Energy & Combustion Science, 2005, 31(3),242.
[4] Jaime González, Cabrera P, José A Carta. Wind energy powered desalination systems, desalination, John Wiley & Sons, Spain, 2019.
[5] Dhivagar R, Sundararaj S.Applied Mechanics and Materials, 2018, 877,414.
[6] Rai S N, Tiwari G N.Energy Conversion & Management, 1983, 23(3),145.
[7] Compain P.Procedia Engineering, 2012, 46(3),220.
[8] Jani H K, Modi K V.Renewable and Sustainable Energy Reviews, 2018, 93,302.
[9] Meng Z, Wu D X, Wang L G, et al.Particuology, 2012, 10(5),614.
[10] Wang F, Liu J, Fang X, et al.Solar Energy Materials and Solar Cells, 2016, 147,101.
[11] Yazdanifard F, Ameri M, Ebrahimnia-Bajestan E.Renewable and Sustai-nable Energy Reviews, 2017, 76,323.
[12] Bellos E, Tzivanidis C.Journal of Thermal Analysis and Calorimetry, 2019, 135(1),763.
[13] Fu Y, Mei T, Wang G, et al.Applied Thermal Engineering, 2017, 114,961.
[14] Wu J, Zodrow K R, Szemraj P B, et al.Journal of Materials Chemistry A, 2017, 5(45),23712.
[15] Gorji T B, Ranjbar A A.Renewable & Sustainable Energy Reviews, 2017, 72,10.
[16] Shirvan K M, Mamourian M, Mirzakhanlari S, et al.Journal of Molecular Liquids, 2016, 220,888.
[17] Shirvan K M, Mamourian M, Mirzakhanlari S, et al.International Journal of Heat & Mass Transfer, 2017, 105,811.
[18] Rashidi S, Mahian O, Languri E M.Journal of Thermal Analysis & Calorimetry, 2018, 131(3),2027.
[19] Choi S U S.ASME Fed, 1995, 231,99.
[20] Bianco V, Manca O, Nardini S, et al.Heat transfer enhancement with nanofluids, CRC Press, Italy, 2000.
[21] Liu X, Wang X, Huang J, et al.Applied Energy, 2018, 220,302.
[22] Eggers J R, Kabelac, Stephan.Applied Thermal Engineering, 2017, 125,29.
[23] Mahian O, Kianifar A, Kalogirou S A, et al.International Journal of Heat & Mass Transfer, 2015, 43(2),584.
[24] Kasaeian A, Eshghi A T, Sameti M.International Journal of Heat & Mass Transfer, 2015, 43(2),584.
[25] Bellos E, Tzivanidis C. Journal of Thermal Analysis and Calorimetry, 2019, 135(1),763.
[26] Zhu Z Y, Zheng H F, Wang Q S.Journal of Engineering Thermophysics, 2018, 39(4),712.
[27] Narayana R L, Raju V R.Frontiers in Energy, 2018(6),1.
[28] Agboola O P, Al-Mutaz I S, Orfi J, et al.Advances in Mechanical Engineering, 2014, 6,925.
[29] Li Qiang, Qi Chunhua, Ren Jianbo, et al.Industrial Water Treatment, 2017, 37(8),11(in Chinese).
李强, 齐春华, 任建波, 等.工业水处理, 2017, 37(8),11.
[30] Li Qiang, Ren Jianbo, Miao Chao, et al.Modern Chemical Industry, 2015, 35(4),52(in Chinese).
李强, 任建波, 苗超,等.现代化工, 2015, 35(4),52.
[31] Rashidi S, Akar S, Bovand M, et al. Renewable Energy, 2018, 115,400.
[32] Kabeel A E, Omara Z M, Essa F A.Energy Convers Manag, 2014, 78,493.
[33] Kabeel A E, Omara Z M, Essa F A.Energy Convers Manag, 2014, 86,268.
[34] Kabeel A E, Omara Z M, Essa F A, et al. Alexandria Engineering Journal, 2017, 56(4),433.
[35] Tiwari G N, Sahota L.Desalination, 2017, 401,151.
[36] Manchanda H, Kumar M.Environmental Progress & Sustainable Energy, 2018, 37(1),444.
[37] Ye Honglie, Yang Junwei, Wang Fei, et al. Journal of Solar Energy, 2019, 40(2),505(in Chinese).
叶鸿烈,杨军伟,王飞,等.太阳能学报, 2019, 40(2),505.
[38] Chang Zehui, Li Wenlong, Song Shanqi, et al. Journal of Solar Energy, 2018,39(7),1775(in Chinese).
常泽辉,李文龙,宋姗琦,等.太阳能学报, 2018,39(7),1775.
[39] Prasad B, Tiwari G N.International Journal of Energy Research, 2015, 20(6),495.
[40] Pounraj P, Winston D P, Kabeel A E, et al.Energy Conversion & Ma-nagement, 2018, 168,371.
[41] Arunkumar T, Jayaprakash R, Denkenberger D, et al.Desalination, 2012, 286(1),342.
[42] Elango T, Kannan A, Murugavel K K.Desalination, 2015, 360,45.
[43] Sharshir S W, Peng G, Wu L, et al. Applied Thermal Engineering, 2017, 113,684.
[44] Mahian O, Kianifar A, Heris S Z, et al. Nano Energy, 2017, 36,134.
[45] Zeiny A, Jin H, Lin G, et al.Renewable Energy, 2018, 122,443.
[46] Ulset E T, Kosinski P, Balakin B V.Applied Thermal Engineering, 2018, 137,62.
[47] Ghafurian M M, Niazmand H, Ebrahimnia-Bajestan E, et al.Journal of Thermal Analysis and Calorimetry, 2019, 135(2),1443.
[48] Xu W, Hu X, Zhuang S, et al.Advanced Energy Materials, 2018, 8(14),1702884.
[49] Zhou L, Tan Y, Wang J, et al.Nature Photonics, 2016, 10(6),393.
[50] Wei Tianqi, Li Xiuqiang, Li Jinlei, et al.Chinese Science Bulletin, 2018, 63(14),158(in Chinese).
魏天骐, 李秀强, 李金磊, 等.科学通报, 2018, 63(14),158.
[51] Jin H, Lin G, Bai L, et al.Nano Energy, 2016, 28,397.
[52] Mehrali M, Ghatkesar M K, Pecnik R.Applied Energy, 2018, 224,103.
[53] Ni G, Miljkovic N, Ghasemi H, et al.Nano Energy, 2015, 17,290.
[54] Rahman M M, Younes H, Ni G, et al. Plasmonic nanofluids enhanced solar thermal transfer liquid. Ph.D. Thesis, Khalifa University, UAE, 2017.
[55] Halas N J, Lal S, Chang W S, et al.Chemical Reviews, 2011, 111(6),3913.
[56] Lu J Y, Raza A, Fang N X, et al.Journal of Applied Physics, 2016, 120(16),1615.
[57] Zhu M, Li Y, Chen F, et al.Advanced Energy Materials, 2018, 8(4),1701028.
[58] Liu T, Li Y.Nature Photonics, 2016, 10(6),361.
[59] Abadía N, Frank B, Chuan Z, et al.Optics Express, 2018, 26(2),1752.
[60] Schuller J A, Barnard E S, Cai W, et al.Nature Materials, 2010, 9(3),193.
[61] He Y, Chen M, Wang X, et al.Solar Energy, 2018, 171,73.
[62] Qu Y, Li Q, Du K, et al.Laser & Photonics Reviews, 2017,1700091.
[63] Bae K, Kang G, Cho S K, et al.Nature Communications, 2015, 6,10103.
[64] Zhou L, Tan Y, Ji D, et al.Science Advances, 2016, 2(4),e1501227.
[65] Hu Z.Macromolecular Symposia, 2004, 207(1),47.
[66] Fei Z, Ye S, Pan L, et al.Accounts of Chemical Research, 2017, 50(7),1734.
[67] Zhang L, Tang B, Wu J, et al.Advanced Materials, 2015, 27(33),4889.
[68] Zhao F, Zhou X, Shi Y, et al.Nature Nanotechnology, 2018, 13(6),489.
[69] Ma C, Shi Y, Pena D A, et al.Angewandte Chemie, 2015, 127(25),7484.
[70] Birgersson E, Li H, Wu S.Journal of the Mechanics and Physics of Solids, 2008, 56(2),444.
[71] Liu Y, Yu S, Feng R, et al.Advanced Materials, 2015, 27(17),2768.
[72] Neumann O, Neumann A D, Silva E, et al.Nano Letters, 2015, 15(12),7880.
[73] Ye M, Jia J, Wu Z, et al.Advanced Energy Materials, 2017, 7(4),1601811.
[74] Ni G, Li G, Boriskina S V, et al. Nature Energy, 2016, 1(9),1.
[75] Ni G, Miljkovic N, Ghasemi H, et al.Nano Energy, 2015, 17,290.
[76] Wang Y, Zhang L, Wang P.ACS Sustainable Chemistry & Engineering, 2016, 4(3),1223.
[77] Chang C, Yang C, Liu Y, et al.ACS Applied Materials & Interfaces, 2016, 8(35),23412.
[78] Geng Yang, Zhang Kezhen, Yang Ke, et al. Carbon, 2019,155,25.
[79] Peng Tao, George Ni, Chengyi Song, et al.Nature Energy, 2018, 3(12),1031.
[80] Kuzmenko A, Van Heumen E, Carbone F, et al.Physical Review Letters, 2008, 100(11),117401.
[81] Neumann O, Neumann A D, Silva E, et al.Nano Letters, 2015, 15(12),7880.
[82] Ghasemi H, Ni G, Marconnet A M, et al.Nature Communications, 2014, 5(5),4449.
[83] LI Xu, Zhao Weifeng, Chen Guohua, et al.Materials Review, 2008, 22(8),48(in Chinese).
李旭, 赵卫峰, 陈国华,等.材料导报, 2008, 22(8),48.
[84] Lee C, Wei X, Kysar J W, et al.Science, 2008, 321(5887),385.
[85] Nair R R, Blake P, Grigorenko A N, et al.Science, 2008, 320(5881),1308.
[86] Balandin A A, Ghosh S, Bao W, et al.Nano Letters, 2008, 8(3),902.
[87] Nair R R, Wu H A, Jayaram P N, et al.Science, 2012, 335(6067),442.
[88] Shen J, Liu G, Huang K, et al. Angewandte Chemie, 2015, 127(2),588.
[89] Huang K, Liu G, Lou Y, et al.Angewandte Chemie International Edition, 2014, 53(27),6929.
[90] Shi L, Chu Z, Liu Y, et al.Advanced Functional Materials, 2015, 24(44),7032.
[91] Yang F, Gang W, Tao M, et al.ACS Sustainable Chemistry & Enginee-ring, 2017, 5(6),4665.
[92] Gang W, Yang F, Ma X, et al.Carbon, 2017, 114,117.
[93] Li X, Xu W, Tang M, et al.Proceedings of the National Academy of Sciences, 2016, 113(49),13953.
[94] Cui L, Zhang P, Xiao Y, et al.Advanced Materials, 2018, 30(22),1706805.
[95] Prando G.Nature Nanotechnology, 2017, 12(6),506.
[96] Yang Y, Zhao R, Zhang T, et al.ACS Nano, 2018, 12(1),829.
[97] Jang G G, Klett J W, Mcfarlane J, et al.Global Challenges, Global Challenges, 2019, 3(8),1900003.
[98] Gin D L, Noble R D.Science, 2011, 332(6030),674.
[99] Zhao Q, Zhang P, Antonietti M, et al.Journal of the American Chemical Society, 2012, 134(29),11852.
10 0 Zhang K, Feng X, Sui X, et al.Angewandte Chemie, 2015, 126(50),14009.
1 Wang Y, Wang C, Song X, et al.Journal of Materials Chemistry A, Journal of Materials Chemistry A, 2018, 6(3),963.
2 Shi L, Wang Y, Zhang L, et al.Journal of Materials Chemistry A, 2017, 5(31),16212.
3 Shao Y, Jiang Z, Zhang Y, et al.ACS Nano, 2018, 12(11),11704.
4 Hua Z, Li B, Li L, et al.The Journal of Physical Chemistry C, 2017, 121(1),60.
5 Chen Q, Pei Z, Xu Y, et al.Chemical Science, 2018, 9(3),623.
6 Jiang Q, Derami H G, Ghim D, et al.Journal of Materials Chemistry A, 2017, 5(35),18397.
7 Chen C, Li Y, Song J, et al.Advanced Materials, 2017, 29(30),1701756.
8 Rong C, Zhu K, Gan Q, et al.Materials Chemistry Frontiers, 2017, 1(12),2620.
[1] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[2] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[3] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[4] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[5] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[6] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[7] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[8] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[9] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[10] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[11] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[12] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[13] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[14] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[15] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed