Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13084-13090    https://doi.org/10.11896/cldb.19040246
  无机非金属及其复合材料 |
碳羟基磷灰石纳米材料的研究进展
袁竞优, 贾庆明, 陕绍云
昆明理工大学化学工程学院,昆明 650224
Recent Progress in the Field of Carbonated Hydroxyapatite Nanomaterials
YUAN Jingyou, JIA Qingming, SHAN Shaoyun
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650224, China
下载:  全 文 ( PDF ) ( 5275KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在羟基磷灰石(HA)被发现后的半个世纪中,研究人员发掘了其在许多领域应用的可能性,如生物组织材料、药物载体、污水处理甚至催化领域等。然而,HA仍存在许多不足之处,尤其在作为生物组织材料的应用中。虽然HA被认为是良好的骨替代物,但它在结构、组成、结晶度、溶解度和生物反应活性方面与生物磷灰石略有不同。大多数生物磷灰石的结晶度较差、非化学计量比并含有少量杂质离子,主要是CO32-和微量的Na+、Mg2+、Fe3+、Cl-、F-。其中,CO32-在骨代谢中的作用至关重要,它占钙化组织质量的3%~8%,并且可根据年龄因素而变化。此外,HA是磷酸钙中溶解性最差且最稳定的物质,这是十分不利的,因为它可能会降低作为植入物时的骨再生速率。因此,CO32-取代的HA可能在骨相关治疗及其他领域中应用潜力巨大。
CO32-取代HA晶格中部分离子形成的碳羟基磷灰石(CHA)是羟基磷灰石(HA)的一种类质同象替换材料。CO32-的引入导致HA完美的晶格结构遭到破坏,从而使CHA具备HA所不具备的溶解性和更好的生物再吸收性;同时,CHA在合成或烧结过程中采用不同的方法,会产生不同形貌和结构的产物,这些产物通常具有比HA更优良的生物相容性与骨传导性、力学性能及更大的比表面积等特性。目前,研究人员已合成了具有中空及多孔结构的CHA,其代表性的形貌为花簇状或蒲公英状,此形貌特征具有极大的比表面积和内部空间,使得其吸附量与载药量增大,同时多孔结构有利于药物的缓释和人骨细胞与CHA的骨融合。
本文介绍了CHA的合成和特点,综述了目前研究中CHA的合成方法、应用领域,并对CHA存在的问题和发展前景进行了讨论,希望为将来合成性能更优良的HA改性材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁竞优
贾庆明
陕绍云
关键词:  碳羟基磷灰石  纳米材料  生物活性材料  多孔材料    
Abstract: Since the discovery of hydroxyapatite (HA), researchers all over the world started to explore its potential applications in many fields, especially in biological tissue materials, drug carriers, sewage treatments, and even in catalytic fields, but HA still has many shortcomings, especially in applications as biological tissue materials. Although HA is considered to be a good bone substitute, it is slightly different from bioapatite in terms of structure, crystallinity, solubility, composition, and bioavailability. In fact, most of the bioapatite contains a small amount of impurity ions and is weakly crystallized and non-stoichiometric. The main impurity ions are CO32- and trace amounts of Na+, Mg2+, Fe3+, Cl- and F-. Among them, the role of CO32- in bone metabolism is crucial, which accounts for about 3%—8% of the weight of calcified tissue, and can vary according to age factors. Furthermore, HA is the least soluble and most stable substance in calcium phosphate, which is highly disadvantageous as it could reduce the rate of bone regeneration during implantation. Therefore, the CO32- substituted HA may have great potential applications in the fields of bone-related therapies.
Carbonated hydroxyapatite (CHA) is formed by the partial substitution of CO32- ions in HA lattice. It is a special kind of isomorphism material to HA, and has many properties superior to HA. Firstly, because of the presence of CO32- ion, the lattice structure of HA could be destroyed in a considerable extent, resulting in the development of special feature of solubility which is not exhibited by HA and it exhibits better bioresorbability. Secondly, the CHA can be produced by different methods of synthesis and annealed at various sintering temperatures, resulting in its formation with different morphologies and surface structures. These products have better biocompatibility, osteoconductivity, larger specific surface area and good mechanical properties. Presently, researchers have synthesized CHA with hollow and porous structure, with characteristic morphology of flower like cluster units or dandelion like structures. As the three dimensional morphology has larger specific surface area and internal space, its adsorption capacity and drug loading increases accordingly. At the same time, the porous structures could facilitate the continual release of drug and bone fusion.
In this review, the synthesis and characteristic properties of CHA are discussed. The effect of various preparation methods, their recent application and the development of CHA are reviewed. The challenges and future developmental prospects of CHA are briefly discussed. This article is expected to provide a reference for the preparation of other kinds of HA modified materials with better physiochemical properties.
Key words:  carbonated hydroxyapatite    nanomaterial    bioactive materials    porous materials
                    发布日期:  2020-06-24
ZTFLH:  TQ170  
基金资助: 国家自然科学基金 (21766016;21566014;51364023);云南省后备人才项目(2015HB014)
通讯作者:  365951921@qq.com   
作者简介:  袁竞优,2018年6月毕业于武汉华夏理工学院,获得工学学士学位。现为昆明理工大学化学工程学院硕士研究生,在贾庆明教授和陕绍云教授的指导下进行研究。目前主要研究领域为化工环保材料。
陕绍云,昆明理工大学化学工程学院教授、博士研究生导师。云南省中青年学术技术带头人后备人才,校矿物生态环境功能陶瓷材料学科方向团队负责人。近年来,在化工环保领域发表论文20余篇,包括Journal of Hazardous Materials,Environmental Science and Pollution Research,Carbohydrate Polymers,Catalysis Communications等。
引用本文:    
袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
YUAN Jingyou, JIA Qingming, SHAN Shaoyun. Recent Progress in the Field of Carbonated Hydroxyapatite Nanomaterials. Materials Reports, 2020, 34(13): 13084-13090.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040246  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13084
1 Wahl D A, Czernuszka J T. Collagen-hydroxyapatite Composites for Hard Tissue Repair, 2006, 11,43.
2 Guo G L, Han Y C, Xu L, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(8),2466(in Chinese).
郭佳丽,韩颖超,徐磊,等. 硅酸盐通报,2016, 35(8),2466.
3 Wallaeys R. In: Proc. of the Colloquium of the International Union of Pure and Applied Chemistry. Münster: Verlag Chemie, Weinheim, 1954, pp. 183
4 Roy D M, Elliot J C. Calcified Tissue International, 1969, 3, 293.
5 Huang Z L, Zhang L M, Liu Y, et al. Chinese Journal of Inorganic Chemistry, 2002, 18(5),469(in Chinese).
黄志良,王大伟,刘羽,等. 无机化学学报,2002, 18(5), 469.
6 Ge Y M, Li H L, Jiang K, et al. Biomaterials Tissue Engineering, 2016, 6(8), 635.
7 Anwar A, Asghar M N, Kanwal Q, et al. Molecular Structure, 2016, 1117, 283.
8 Gibson I R, Bonfield W. Biomedical Materials Research, 2002, 59(4), 697.
9 Bang L T, Ramesh S, Purbolaksono J, et al. Materials Design, 2015, 87, 788.
10 Shu C, Wang Y W, Hong L, et al. Ceramics International, 2005, 31(1), 135.
11 Youness R A, Taha M A, Elhaes H, et al. Materials Chemistry Physics, 2017, 190, 209.
12 Guo Y J, Wang Y Y, Chen T, et al. Materials Science Engineering 2013, 33(6), 3166.
13 Long T, Guo Y P, Liu Y Z, et al. RSC Advances, 2013, 3(46), 24169.
14 Sun R X, Yang L L, Zhang Y X, et al. CrystEngComm, DOI:10.1039.C1036CE01494A.
15 Karunakaran G, Kumar G S, Cho E B, et al. Ceramics International, 2019, 45(1), 970.
16 Guo Y J, Long T, Chen W, et al. Materials Science Engineering, 2013, 33(7), 3583.
17 Zhou W Y, Wang M, Cheung W L, et al. Journal of Materials Science: Materials in Medicine, 2008, 19(1), 103.
18 Solans C, Izquierdo P, Nolla J, et al. Current Opinion in Colloid Interface Science, 2005, 10(3), 102.
19 He Q J, Huang Z L, Liu Y, et al. Materials Letters, 2006, 61(1), 141.
20 Boanini E, Bigi A. Thin Solid Films, 2006, 497(1-2), 53.
21 Wen X, Shao C T, Chen W, et al. RSC Advances, DOI:10.1039.C1036RA20448A.
22 Liao D X, Zheng W, Li X M, et al. Journal of Hazardous Materials, 2010, 177(1-3), 126.
23 Zheng W, Li X M, Yang Q, et al. Journal of Hazardous Materials, 2007, 147(1-2), 534.
24 Xu H Y, Yang L, Wang P, et al. Journal of Environmental Management, 2008, 86(1), 319.
25 Tang W Q, Zeng R Y, Feng Y L, et al. The Chinese Journal of Process Engineering, 2009, 9(6), 1090(in Chinese).
唐文清,曾荣英,冯泳兰,等. 过程工程学报,2009, 9(6), 1090.
26 Tang W Q, Zeng G M, Feng R Y, et al. Metal Mine, 2007(3), 73(in Chinese).
唐文清,曾光明,曾荣英,等. 金属矿山,2007(3), 73.
27 Tang W Q, Zeng R Y, Feng Y L, et al. Inorganic Chemicals Industry, 2009, 41(1), 44(in Chinese).
唐文清,曾荣英,冯泳兰,等. 无机盐工业,2009, 41(1), 44.
28 Tang W Q, Zeng R Y, Feng Y L, et al. China Water & Wastewater, 2009, 25(15), 92(in Chinese).
唐文清,曾荣英,冯泳兰,等. 中国给水排水,2009, 25(15), 92.
29 Tang W Q, Zeng G M, Lan J K, et al. Journal of Guilin University of Technology, 2006, 26(3), 388(in Chinese).
唐文清, 曾光明, 蓝俊康, 等. 桂林理工大学学报, 2006, 26(3), 388.
30 Tang W Q, Zeng G M, Li X M, et al. Environmental Protection of Che-mical Industry, 2006, 26(4), 325(in Chinese).
唐文清,曾光明,李小明,等. 化工环保,2006, 26(4), 325.
31 Liu G, Xue C, Zhu P. Nanomaterials, 2017, 7(6), 137.
32 Zimmerli W, Trampuz A, Ochsner P E. New England Journal of Medicine, 2004, 351(16), 1645.
33 Vallet-Regí M, Balas F, Colilla M, et al. Progress in Solid State Chemistry, 2008, 36(3), 163.
34 Zhang X, Zhao X, Li Y, et al. Chinese Journal of Dental Materials and Devices, 2018(3), 2(in Chinese).
张雪,赵旭,李毅,等. 口腔材料器械杂志,2018(3), 2.
35 Virto M R, Frutos P, Torrado S, et al. Biomaterials, 2003, 24(1), 79.
36 Virto M R, Elorza B, Torrado S, et al. Biomaterials, 2007, 28(5), 877.
37 Lecaroz C, Gamazo C, Blancoprieto M J. Journal of nanoscience and nanotechnology, 2006, 6(9-10), 3296.
38 Gamazo C, Prior S, Concepción Lecároz M, et al. Expert Opinion on Drug Delivery, 2007, 4(6), 677.
39 Klein C P A T, de Blieck-Hogemrst J M A, Wolket J G C, et al. Biomaterials, 1990, 11(7), 509.
40 Legeros R Z. Clinical Orthopaedics, 2002, 395, 81.
41 Rupani A, Hidalgo-Bastida L A, Rutten F, et al. Journal of Biomedical Materials Research Part A, 2012, 100A(4), 1089.
42 Baradaran S, Moghaddam E, Basirun W J, et al. Carbon, 2014, 69, 32.
43 Cao W, Hench L L. Ceramics International, 1996, 22(6), 493.
44 Germaini M M, Detsch R, Grünewald A, et al. Biomedical Materials Research, 2017, 12(3), 035008.
45 Landi E, Celotti G, Logroscino G, et al. Journal of the European Ceramic Society, 2003, 23(15), 2931.
46 Rupani A, Hidalgo-Bastida L A, Rutten F, et al. Journal of Biomedical Materials Research Part A, 2012, 100(4), 1089.
47 Choi S, Coonrod S, Estroff L, et al. Acta Biomaterialia, 2015, 24, 333.
48 Lovón-Quintana J J, Rodriguez-Guerrero J K, Vale nça P G. Applied Catalysis a General, 2017, 542, 136.
[1] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[2] 邱军科, 王朋, 张迪, 石林, 张凰. 三维石墨烯基多孔碳材料的制备及对污染物的吸附性能研究进展[J]. 材料导报, 2020, 34(13): 13028-13035.
[3] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[4] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[5] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[6] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[7] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[8] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[9] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[10] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[11] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[12] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[13] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[14] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[15] 鲍艳, 刘盼, 郭佳佳. 利用双子表面活性剂辅助制备纳米材料和介孔材料的研究进展[J]. 材料导报, 2019, 33(21): 3678-3685.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed