Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13028-13035    https://doi.org/10.11896/cldb.19060111
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
三维石墨烯基多孔碳材料的制备及对污染物的吸附性能研究进展
邱军科1,†, 王朋2,†, 张迪1,3, 石林1, 张凰3,4
1 昆明理工大学环境科学与工程学院,昆明 650500
2 成都理工大学环境学院,成都 610059
3 云南省土壤固碳与污染控制重点实验室,昆明 650500
4 昆明理工大学农业与食品学院,昆明 650500
Preparation of Three-dimensional Graphene-based Porous Carbon Materials and Their Adsorption Properties for Pollutants: a Review
QIU Junke1,†, WANG Peng2,†, ZHANG Di1,3, SHI Lin1, ZHANG Huang3,4
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Environmental College, Chengdu University of Technology, Chengdu 610059, China
3 Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
4 Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 3076KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 一维的碳纳米管(Carbon nanotubes,CNTs)和二维的氧化石墨烯(Graphene oxide,GO)是常见的碳纳米材料,被广泛应用于环境污染物的吸附去除。它们在水体中易发生团聚和堆积,使其在实际应用中受到限制,因此急需寻找新型吸附碳材料。近十年来,随着对碳基纳米材料的深入研究,三维石墨烯基多孔碳材料(Three-dimensional graphene-based porous carbon materials,3D GBMs)引起了研究者的密切关注。
3D GBMs是由石墨烯基纳米材料在一定条件下组装形成的多孔碳材料。它不仅具有高孔隙率和大表面积的特点,还有良好的力学性能,且易于回收和循环利用。3D GBMs因继承了单体材料的性能,已成为近年来研究的热点。根据3D GBMs独特的结构和性能,其已被应用于环境修复、催化剂和能源储存等诸多领域。
然而,关于3D GBMs的研究依然存在一些挑战。例如,前驱体的原材料、尺寸、pH值可能影响3D GBMs的吸附性能;制备方法有待选择和优化,冷冻干燥处理过程对3D多孔结构的破坏等,这将直接影响3D GBMs性能的发挥。因此,3D GBMs的制备流程需要进一步深入探讨,以期更好地满足实际应用的需求。
目前,研究者通过水热还原、化学还原及化学气相沉积等方法制备了不同性能的3D GBMs。不同的制备方法归根结底是对3D GBMs进行各种功能化处理。研究发现,通过不同处理方式功能化的3D GBMs吸附剂,均可对目标污染物达到良好的去除效果。然而,3D GBMs的吸附性能受多种因素影响,其中合成环节是研究3D GBMs吸附性能的主要关注点。这是因为前驱体、制备条件及干燥过程等均能影响3D GBMs的结构和性能。了解不同制备过程对3D GBMs吸附性能的影响,将有助于推广其在环境污染治理领域的应用。
本文总结了3D GBMs不同的制备方法,同时以制备流程为主线,重点论述了各制备环节对3D GBMs吸附性能的影响。最后,提出了三个主要的展望方向:水凝胶在实际应用中的角色剖析、表面积测定新方法、3D GBMs的潜在环境风险。本文不仅能推动3D GBMs在水处理领域的发展,而且也将为其在其他领域的制备和应用提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱军科
王朋
张迪
石林
张凰
关键词:  石墨烯  三维多孔材料  性能影响  吸附  环境污染物    
Abstract: One-dimensional (carbon nanotubes, CNTs) and two-dimensional (graphene oxide, GO) carbon nanomaterials are widely used in the adsorption and removal of environmental pollutants. However, their practical applications have been restricted because of their agglomeration and accumulation in water. So it is imperative to search for new carbon materials. Three-dimensional graphene-based porous carbon materials (3D GBMs) have recently drawn more and more attention with the in-depth research on these carbonaceous nanomaterials in the last decade.
The 3D GBMs are assembled from porous carbon materials or biomass under certain conditions. They have high porosity, large surface area, good mechanical properties and easy to recycle. Moreover, 3D GBMs have become a research hot spot in recent years due to their inherited properties of monomer materials. Due to their unique structure and performance, 3D GBMs have been applied in many fields such as environmental remediation, catalyst and energy storage, especially in the field of environmental remediation.
But there are some shortcomings that can affect the performance of 3D GBMs. For example, the precursor material, size and pH may affect the adsorption performance of 3D GBMs. The preparation method needs to be selected and optimized, the damage of freeze-drying process to 3D porous structure. The further research will be needed to explore their preparation and adsorption properties.
The 3D GBMs with different properties have been prepared by various methods, such as hydrothermal reduction, chemical reduction and che-mical vapor deposition. The different preparing methods were rooted in the surface functionalization of 3D GBMs. It has been found that 3D GBMs adsorbents with good removal capacity on target pollutants can be achieved by distinctive treatment methods. However, some researchers have noted that the adsorption performance of 3D GBMs can be affected by many factors. The synthesis is the main focus of research on factors affec-ting adsorption performance, among which the synthesis is the main focus of the study on the adsorption performance of 3D GBMs. This is because precursor, hydrothermal reaction and drying process can all affect the structure and performance of 3D GBMs. It is indicated that the preparation method of 3D GBMs and the factors affecting its adsorption properties need to be further studied. Understanding the effects of various pre-paration processes on the adsorption of pollutants of 3D GBMs will be helpful to promote its application in the field of environmental governance.
In this article, different preparation methods of 3D GBMs are summarized. Meanwhile, the main topic is the preparation process. According to the preparation process, the influence of each preparation step on the adsorption performance of 3D GBMs is emphatically discussed. Finally, three major prospects in this paper are proposed, including dissecting the role of hydrogel in practical application, measuring surface area me-thods and existing potential environmental risks of 3D GBMs. This review will not only promote the development of 3D GBMs in the field of water treatment, but also provide theoretical guidance for its preparation and application in other fields.
Key words:  graphene    three dimensional porous materials    performance impact    adsorption    environmental pollutant
                    发布日期:  2020-06-24
ZTFLH:  X-1  
基金资助: 国家自然科学基金(41663014;41303093);云南省中青年学术和技术带头人后备人才项目(2018HB008);云南省万人计划青年拔尖人才项目
通讯作者:  zhanghuang2002113@163.com   
作者简介:  邱军科,2017年6月毕业于兰州交通大学环境与市政工程学院,获得环境工程专业工学学士学位。现为昆明理工大学环境科学与工程学院环境科学专业硕士研究生。主要研究方向为三维碳基纳米材料的制备及其对污染物吸附。
张凰,2013年12月毕业于昆明理工大学,获得环境科学博士学位,主要研究碳纳米材料对环境微生物生理、生态的影响。读博期间,在泰国皇太后大学(Mah Fah Luang University)生物技术专业国家公派留学1年;在美国麻省大学(University of Massachusetts)环境土壤化学实验室访问学习1年。现为昆明理工大学农业与食品学院副教授,已在Fungal DiversityEnvironmental pollution、Chemosphere等杂志上公开发表SCI学术论文20余篇。
引用本文:    
邱军科, 王朋, 张迪, 石林, 张凰. 三维石墨烯基多孔碳材料的制备及对污染物的吸附性能研究进展[J]. 材料导报, 2020, 34(13): 13028-13035.
QIU Junke, WANG Peng, ZHANG Di, SHI Lin, ZHANG Huang. Preparation of Three-dimensional Graphene-based Porous Carbon Materials and Their Adsorption Properties for Pollutants: a Review. Materials Reports, 2020, 34(13): 13028-13035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060111  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13028
1 Dasgupta A,Rajukumar L P,Rotella C,et al. Nano Today, 2017, 12, 116.
2 Park S,An J H,Piner R D,et al. Chemistry of Materials, 2008, 20, 6592.
3 Liu T H,Li Y H,Du Q J,et al. Colloid Surf B-Biointerfaces, 2012, 90, 197.
4 Sitko R,Turek E,Zawisza B,et al. Dalton Transactions, 2013, 42, 5682.
5 Robati D,Mirza B,Rajabi M,et al. Chemical Engineering Journal, 2016, 284, 687.
6 RomoHerrera J M,Terrones M,Terrones H,et al. Nano Letters, 2007, 7, 570.
7 Tao Y,Kong D B,Zhang C,et al. Carbon, 2014, 69, 169.
8 Sun H Y,Xu Z,Gao C. Advanced Materials, 2013, 25, 2554.
9 Chen Z,Ren W,Gao L,et al. Nature Materials, 2011, 10, 424.
10 Shen J H,Zhu Y H,Jiang H,et al. Nano Today, 2016, 11, 483.
11 Hu K W,Xie X Y,Cerruti M,et al. Langmuir, 2015, 31, 5545.
12 Hu K,Szkopek T,Cerruti M. Journal of Materials Chemistry A, 2017, 5, 23123.
13 Naficy S,Jalili R,Aboutalebi S H,et al. Materials Horizons, 2014, 1, 326.
14 Shen Z,Ye H,Zhou C,et al. Nanotechnology, 2018, 29, 13294.
15 Shen Y,Zhu X,Chen B. Journal of Materials Chemistry A, 2016, 4, 12106.
16 Wasalathilake K C,Galpaya D G D,Ayoko G A,et al. Carbon, 2018, 137, 282.
17 Jiao J,Xin X,Shen J,et al. RSC Advances, 2016, 6,94373.
18 Goldstein A P,Mickelson W,Machness A,et al. The Journal of Physical Chemistry C, 2014, 118, 28855.
19 Hu K,Xie X,Szkopek T,et al. Chemistry of Materials, 2016, 28, 1756.
20 Wu Y,Yi N,Huang L,et al. Nature Communication, 2015, 6, 6141.
21 Wan W C,Zhang F,Yu S,et al. New Journal of Chemistry, 2016, 40, 3040.
22 Yu F,Sun Y,Yang M,et al. Journal of Hazardous Materials, 2019, 374, 195.
23 Yousefi N,Wong K K W,Hosseinidoust Z,et al. Nanoscale, 2018, 10, 7171.
24 Li J,Li J,Meng H,et al. Journal of Materials Chemistry A, 2014, 2, 2934.
25 Li J,Zhao S,Zhang G,et al. Journal of Materials Chemistry A, 2015, 3, 15482.
26 Wang Z,Tang Z,Han Z,et al. RSC Advances, 2015, 5, 19838.
27 Kabiri S,Tran D N H,Altalhi T,et al. Carbon, 2014, 80, 523.
28 Kabiri R,Namazi H. Journal of Nanoparticle Research, 2014, 16, 1.
29 Shen Y,Zhu X Y,Zhu L Z,et al. Chemical Engineering Journal, 2017, 314, 336.
30 Huang Z W,Li Z J,Wu Q Y,et al. Environmental Science-Nano, 2018, 5, 2077.
31 Cao M,Du C Y,Guo H,et al. Composites Part a-Applied Science and Manufacturing, 2018, 115, 331.
32 Jiang X,Ma Y,Li J,et al. Journal of Physical Chemistry C, 2010, 114, 22462.
33 Fang Q L,Zhou X F,Deng W,et al. Chemical Engineering Journal, 2017, 308, 1001.
34 Shu D,Feng F,Han H,et al. Chemical Engineering Journal, 2017, 324, 1.
35 Pakulski D,Czepa W,Witomska S,et al. Journal of Materials Chemistry A, 2018, 6, 9384.
36 Arshad F,Selvaraj M,Zain J,et al. Separation and Purification Technology, 2019, 209, 870.
37 Gonzalez J A,Villanueva M E,Piehl L L,et al. Chemical Engineering Journal, 2015, 280, 41.
38 Wicklein B,Kocjan A,Salazar-Alvarez G,et al. Nature Nanotechnology, 2015, 10, 277.
39 Sahoo P K,Kumar N,Thiyagarajan S,et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 7475.
40 Li C,Qiu L,Zhang B,et al. Advanced Materials, 2016, 28, 1510.
41 Qiu L,Liu J Z,Chang S L,et al. Nature Communications, 2012, 3, 1241.
42 Ye S B,Liu Y,Feng J C. ACS Applied Materials & Interfaces, 2017, 9, 22456.
43 Singh G,Soundarapandian S. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 189.
44 Wang Y,Huang J,Chen X,et al. Carbon, 2018,137,368.
45 Xu F,Lin T,Bi H,et al. Carbon, 2017, 111, 128.
46 Lee B,Lee S,Lee M,et al. Nanoscale, 2015, 7, 6782.
47 Luo J,Lai J P,Zhang N,et al. ACS Sustainable Chemistry & Engineering, 2016, 4, 1404.
48 Garcia-Bordeje E,Victor-Roman S,Sanahuja-Parejo O,et al. Nanoscale, 2018, 10, 3526.
49 Jayanthi S,KrishnaRao Eswar N,Singh S A,et al. RSC Advances, 2016, 6, 1231.
50 Liao Y,Wang M,Chen D J. Industrial & Engineering Chemistry Research, 2018, 57, 8472.
51 Farghali A A,Bahgat M,El Rouby W M A,et al. Journal of Alloys and Compounds, 2013, 555, 193.
52 Xiao J,Lv W,Xie Z,et al. Journal of Materials Chemistry A, 2016, 4, 12126.
53 Lee S,Moon B J,Lee H J,et al. ACS Applied Materials & Interfaces, 2018, 10, 17335.
54 Kim H,Kang S O,Park S,et al. Journal of Industrial And Engineering Chemistry, 2015, 21, 1191.
55 Zhao Q,Zhu X,Chen B. Chemical Engineering Journal, 2018, 334, 1119.
56 Yang Q X,Lu R,Ren S S,et al. Chemical Engineering Journal, 2018, 348, 202.
57 Zhao Y,Sun T,Liao W,et al. ACS Applied Materials & Interfaces, 2019, 11, 22794.
58 Cheng C,Deng J,Lei B,et al. Journal of Hazardous Materials, 2013, 263, 467.
59 Awad F S,AbouZeid K M,Abou El-Maaty W M,et al. ACS Applied Materials & Interfaces, 2017, 9, 34230.
60 Tan B,Zhao H M,Zhang Y B,et al. Journal of Colloid and Interface Science, 2018, 512, 853.
61 Yu D Y,Wang Y J,Wu M H,et al. Journal of Cleaner Production, 2019, 232, 774.
62 Zhan W W,Gao L,Fu X,et al. Applied Surface Science, 2019, 467, 1122.
63 Zhang S,Liu G,Gao Y,et al. The Science of the Total Environment, 2019, 694, 133671.
64 Ma J,Yang M X,Yu F,et al. Scientific Reports, 2015, 5, 10.
65 Ma J,Sun Y R,Zhang M Z,et al. Environmental Science & Technology, 2017, 51, 12283.
66 Chen Y Q,Chen L B,Bai H,et al. Journal of Materials Chemistry A, 2013, 1, 1992.
67 Wang X B, Li J Q, Luo Y J. Acta Physico-Chimica Sinica, 2013,29(10),2079(in Chinese).
王学宝,李晋庆,罗运军. 物理化学学报, 2013, 29(10), 2079.
68 Chabot V,Higgins D,Yu A,et al. Energy & Environmental Science, 2014, 7, 1564.
69 Pikal M J,Shah S. International Journal of Pharmaceutics, 1990, 62, 165.
70 Bellows R J,King C J. Cryobiology, 1972, 9, 559.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[3] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[4] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[5] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[6] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[7] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[8] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[9] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[10] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[11] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[12] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[13] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[14] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[15] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed