Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18188-18193    https://doi.org/10.11896/cldb.19070190
  高分子与聚合物基复合材料 |
氧等离子体处理碳纳米管对剪切增稠液增强芳纶织物防刺性能的影响
王瑞1,2, †, 李聃阳1,2, †, 刘星1,2, 方纾1,2, 伏立松1,2, 熊维成1,2
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津工业大学先进纺织复合材料教育部重点实验室,天津 300387
Effect of Oxygen-plasma-modified Carbon Nanotubes on the Stab Resistance of Shear Thickening Fluid Impregnated Kevlar Fabrics
WANG Rui1,2,†, LI Danyang1,2,†, LIU Xing1,2, FANG Shu1,2, FU Lisong1,2, XIONG Weicheng1,2
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 6465KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高芳纶(Kevlar) 织物的防刺性能,实现防刺服的轻量化,本工作将氧等离子体处理的多壁碳纳米管 (M-MWNTs) 掺杂至剪切增稠液 (STF) 中,并浸渍芳纶织物制成防刺材料,探究M-MWNTs对STF含浸芳纶织物准静态防刺性能的影响。用拉曼 (Raman) 光谱、流变仪、扫描电镜 (SEM)、万能强力仪对M-MWNTs、M-MWNT/STF的流变性能及复合织物的纱线抽拔性能、准静态锥刺和刀刺性能进行表征。经氧等离子体处理后,MWNTs中sp3杂化的碳含量增加,说明MWNTs表面接枝了含氧官能团。掺杂0.06%(质量分数) 的M-MWNTs使STF的最大粘度从1 563 Pa·s提高至3 417 Pa·s,临界剪切速率从14.68 s-1降至2.53 s-1。此外,经M-MWNT/STF浸渍后,复合织物纱线的抽拔力明显提升。在相同的面密度下,0.06% M-MWNT/STF/芳纶复合织物抗锥刺、刀刺性能分别为972.2 N和949.9 N,比纯芳纶织物分别提高了198.1%和260.0%。上述结果表明,MWNTs经氧等离子体处理后,其表面接枝的含氧官能团可促进STF的剪切增稠作用,提高纱线间摩擦力,使织物失效模式由纱线滑移变为纱线断裂,从而提高织物的防刺性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑞
李聃阳
刘星
方纾
伏立松
熊维成
关键词:  碳纳米管  氧等离子体处理  剪切增稠液  芳纶织物  防刺性能    
Abstract: To improve the stab resistance of Kevlar fabrics and realize the lightweight of protective garments, in this study, stab-resistance material was fabricated by Kevlar woven fabrics impregnated in shear thickening fluid (STF) contained oxygen-plasma modified multi-walls carbon nanotubes (M-MWNTs). The influence of M-MWNTs on the quasi-static stab resistant performance of STF impregnated Kevlar woven fabrics was investigated. The M-MWNTs, the rheological property of M-MWNT/STF, the surface morphology, yarn pull-out force and spike and knife stab performance of M-MWNT/STF/Kevlar fabrics were characterized by Raman spectroscopy, Malvin rotational rheometer, scanning electron microscopy (SEM) and Instron 5969 machine. After oxygen-plasma treatment, the content of sp3 hybrid carbon increased, indicating the oxygen-containing functional groups were grafted onto the MWNTs. The rheological tests showed that addition of 0.06wt% M-MWNTs caused a marked increase in the peak viscosity from 1 563 Pa·s to 3 417 Pa·s and a decrease in the critical shear rate from 14.68 s-1 to 2.53 s-1. The yarn pul-lout test showed that the yarn friction of M-MWNT/STF/Kevlar fabrics was far superior to the original fabrics. Under similar areal density, the 0.06wt% M-MWNT/STF/Kevlar fabrics could resist 972.2 N of quasi-static spike and 949.9 N of knife stab force, which were 198.1% and 260% higher than the neat Kevlar fabrics. These results revealed that the oxygen-containing MWNTs could promote the shear thickening effect of STF and increase the friction between yarns that made fabrics failure mode change from yarn slip to yarn breakage, resulting in the improvement of the stab-resistance of M-MWNT/STF/Kevlar fabrics.
Key words:  multi-walls carbon nanotubes    oxygen-plasma treatment    shear thickening fluid    Kevlar fabric    stab resistant performance
                    发布日期:  2020-09-12
ZTFLH:  T322  
基金资助: 国家自然科学基金青年基金项目(11602168);天津市科委重点课题 (15ZXLCSY00040)
通讯作者:  wangrui@tiangong.edu.cn   
作者简介:  王瑞,天津工业大学教授,博士研究生导师。1998年毕业于日本东北大学,取得材料加工学工学博士学位。后于日本宫城教育大学任短期博士后研究员及日本信州大学高级研究学者。先后承担并完成教育部、天津市、中石化及企业委托开发项目30余项。在国内外各类重要刊物和国际国内学术会议公开发表学术论文共185篇,其中被EI、SCI、ISTP收录60篇。其团队主要研究方向包括:天然纤维复合材料;管道修复复合材料;低温防护纺织材料;功能与智能纺织防护材料等。
李聃阳,天津工业大学纺织科学与工程专业在读博士研究生。研究方向为剪切增稠液及柔性防刺材料。
引用本文:    
王瑞, 李聃阳, 刘星, 方纾, 伏立松, 熊维成. 氧等离子体处理碳纳米管对剪切增稠液增强芳纶织物防刺性能的影响[J]. 材料导报, 2020, 34(18): 18188-18193.
WANG Rui, LI Danyang, LIU Xing, FANG Shu, FU Lisong, XIONG Weicheng. Effect of Oxygen-plasma-modified Carbon Nanotubes on the Stab Resistance of Shear Thickening Fluid Impregnated Kevlar Fabrics. Materials Reports, 2020, 34(18): 18188-18193.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070190  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18188
1 Xu Y, Chen X, Wang Y, et al. Composite Structures, 2017, 163, 465.
2 Wang S, Xuan S, Wang Y, et al. ACS Applied Materials & Interfaces, 2016, 8(7), 4946.
3 Lu Z Q, Xu Y. Journal of Textile Reasearch, 2018, 39(10),63(in Chinese).
陆振乾, 许玥. 纺织学报, 2018, 39(10),63.
4 Li W, Xiong D, Zhao X,et al. Materials & Design, 2016, 102, 162.
5 Lee Y S, Wetzel E D, Wagner N J. Journal of Materials Science, 2003, 38(13),2825.
6 Li D, Wang R, Liu X, et al. Composite Structures, 2020, 249, 112557
7 Feng X, Li S, Yan W, et al. Materials & Design,2014,65,456
8 Avila A F, de Oliveira A M, Leao S G,et al. Composites Part A: Applied Science and Manufacturing, 2018, 112, 468.
9 Hasanzadeh M, Mottaghitalab V, Babaei H,et al. Composites Part A: Applied Science and Manufacturing, 2016, 88, 263.
10 Wang F F, Zhang Y, Zhang H,et al. RSC Advances, 2018, 8(10), 5268.
11 Ghosh A, Chauhan I, Majumdar A,et al. Cellulose, 2017, 24(10), 4163.
12 Laha A, Majumdar A. Applied Clay Science, 2016, 132, 468.
13 Kong L, Li F, Wang F, et al. Composites Science and Technology, 2018, 162, 23.
14 Calle D, Negri V, Munuera C, et al. Carbon, 2018,131,229.
15 Usman Farid M, Luan H Y, Wang Y, et al. Chemical Engineering Journal, 2017, 325, 239.
16 Tao Q, Wang R, Wang W et al. Journal of Functional Materials, 2017, 48(2), 2182(in Chinese).
陶强, 王瑞, 王威,等. 功能材料, 2017, 48(2), 2182.
17 Gürgen S, Kuşhan M C. Composites Part A: Applied Science and Manufacturing, 2017, 94, 50.
18 Brady J F, Bossis G. Journal of Fluid Mechanics, 2006, 155, 105.
19 Cheng X, McCoy J H, Israelachvili J N, et al. Science, 2011, 333(6047), 1276.
20 Sha X, Yu K, Cao H, et al. Journal of Nanoparticle Research, 2013, 15(7),1816.
21 Qin J, Zhang G, Zhou L, et al. RSC Advances, 2017, 7(63), 39803.
22 He Q, Cao S, Wang Y, et al. Composites Part A: Applied Science and Manufacturing, 2018, 106, 82.
23 Zhao J H, Cao H L, Li X, et al. Acta Materiae Compositae Sinica, 2012, 29(1), 54(in Chinese).
赵金华, 曹海琳, 李霞,等. 复合材料学报, 2012, 29(1), 54.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[3] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[4] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[5] 李锐, 孙晓刚, 黄雅盼, 魏成成, 梁国东, 邹婧怡, 徐宇浩, 何强. 三维多孔碳纳米片PC/CNT夹层高性能锂硫电池[J]. 材料导报, 2020, 34(16): 16006-16010.
[6] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[7] 阮超, 陈名海. 电弧放电法制备碳纳米管研究进展[J]. 材料导报, 2020, 34(11): 11129-11136.
[8] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[9] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[10] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[11] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[12] 闫民杰, 刘梁森, 陈莉, 刘丽研, 荆妙蕾, 徐志伟, 姜亚明, 傅宏俊. 基于碳纳米管界面改性的碳纤维复合材料抗γ辐射性能研究[J]. 材料导报, 2019, 33(24): 4174-4180.
[13] 任秀秀, 赵省向, 韩仲熙, 邢晓玲. 纳米复合含能材料的制备方法、复合体系及其性能的研究进展[J]. 材料导报, 2019, 33(23): 3939-3948.
[14] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[15] 刘星, 霍俊丽, 李婷婷, 林佳弘, 楼静文. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16): 2799-2803.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed