Abstract: Nano-composite energetic materials are a new type of energetic materials which have been developed in the military field of all countries. Nano-composite energetic materials are characterized by intimate mixing of reactive components from nanometer to atomic level, which have the advantages of high specific surface area, high chemical reactivity, short diffusion distance, and large contact area between reac-tants. Thus, it promotes the rapid combustion and efficient energy release of the composite energetic materials. The high energy density and high energy release rate of nano-composite energetic materials have provoked wide concern of researchers, so the preparation of nano-composite energetic materials has been rapidly developed. Commonly used preparation methods include sol-gel method, high energy ball milling method, solvent-nonsolvent method, spray drying method, supercritical fluid method, etc. New preparation techniques include spray flashing, two-step method, self-assembly method, etc. In addition, it is one of the ways to combine various preparation processes to prepare nanocomposite energetic materials with superior performance. There are four main types of nano-composite energetic materials systems: (i) nano-composites dispersed in continuous medium by simple explosives/oxidants; (ii) metastable intermolecular complexes (MICs); (iii) carbon nanotube-based composites energetic materials; (iv) nano-porous silicon/oxidant composite energetic materials. According to the characteristics of the reactants of different composite systems, it is necessary to select suitable preparation techniques. At the same time, different composite systems also have their applicable application fields. In this paper, we introduce the preparation techniques, the composite system and its property of the nano-composite energetic materials in detail. The conventional preparation techniques and the novel preparation techniques of the nano-composite energetic material are described. At last, we summarize the composition characteristics and typical formulation properties of the four main compound systems.
Svatopluk Z, Marcela J. Propellants, Explosives, Pyrotechnics,2016,41(3),426.2 Berner M K, Zarko V E, Talawar M B. Combustion, Explosion, and Shock Waves,2013,49(6),625.3 Badgujar D M, Talawar M B, Asthana S N, et al. Journal of Hazardous Materials,2008,15(1),289.4 Fried L E, Manaa M R, Pagoria P F, et al. Annual Review of Materials Research,2001,31,291.5 Pamela J, Kaste B. The Amptiac Newsletter,2004,8(4),85.6 Alexander E G, Randall L S, Joe H S, et al. Aerogels handbook,Sprin-ger, New York, USA,2011,pp.585.7 Martirosyan K S. Journal of Materials Chemistry,2011,21(26),9400.8 Petrantoni M,Rossi C,Conèdèra V, et al. Journal of Physics and Chemistry of Solids,2010,71(2),80.9 Tillotson T M, Gash A E, Simpson R L, et al. Journal of Non-Crystalline Solids,2001,285(1-3),338. 10 Rossi C, Zhang K, Estève D, et al. Journal of Microelectromechanical Systems,2007,16,919.11 Perry W L, Smith B L, Bulian C J, et al. Propellants, Explosives, Pyrotechnics,2004,29(2),99.12 Sandra K Young. Overview of sol-gel science and technology, US Army Research Laboratory Report No. ARL-TR-2650.13 Bayat Y, Eghdamtalab M, Zeynali V. Journal of Energetic Materials,2010,28(4),273.14 Gharsallaoui A, Roudaut G, Chambin O, et al. Food Research International,2007,40(9),1.15 Shende R, Subramanian S, Hasan S, et al. Propellants, Explosives, Pyrotechnics,2010,33(2),122.16 Simpson R L, Tillotson T M, Hrubesh L W, et al. In:31st International Annual Conference of ICT. Germany,2000,pp.1.17 Amir Weitz, Gady K,Alex T, et al. Propellants, Explosives, Pyrotechnics,2015,40(5),706.18 Shen L H, Li G P, Luo Y J, et al. Science China Chemistry,2014,57(6),797.19 Nic F, Zhang J,Guo Q, et al. Journal of Physics & Chemistry of Solids,2010,71(2),109.20 Wang J Y, Wang R H,Liu F, et al. Journal of Solid Rocket Technology,2014,37(2),228.21 Ru C B,Zhang X T, Ye Y H, et al. Initiators & Pyrotechnics,2013(4),33(in Chinese).汝承博,张晓婷,叶迎华,等.火工品,2013(4),33.22 Jin M M,Luo Y J. Chinese Journal of Explosives & Propellants,2012,35(6),65(in Chinese).晋苗苗,罗运军.火炸药学报,2012,35(6),65.23 Li G P, Liu M, Zhang R, et al. Colloid & Polymer Science,2015,293(8),2269.24 Zhang D D, Huang Y S, Li R, et al. Chinese Journal of Energetic Mate-rials,2017,25(8),656(in Chinese).张冬冬,黄寅生,李瑞,等.含能材料,2017,25(8),656.25 Jin M, Wang G, Deng J, et al. Journal of Sol-Gel Science and Technology,2015,76(1),58.26 Cheng T,Li Q, Guo S F, et al. Chinese Journal of Explosives & Propellants,2018,41(3),243(in Chinese).陈腾,李强,郭双峰,等.火炸药学报,2018,41(3),243.27 Perry W L, Tappan B C, Reardon B L, et al. Journal of Applied Physics,2007,101(6),1.28 Prakash A, McCormick A V, Zachariah M R. Advanced Materials,2005,17(7),900.29 Walter K C, Pesiri D R, Wilson D E. Journal of Propulsion and Power,2007,23(4),645.30 Schoenitz M, Ward T S, Dreizin E L. Proceedings of the Combustion Institute,2005,30(2),2071.31 Umbrajkar S M, Seshadri S, Schoenitz M, et al. Journal of Propulsion and Power,2008,24(2),192.32 Monk I, Schoenitz M, Jacob R J, et al. Combustion Science and Technology,2017,189(3),20.33 Song X, Wang Y, Zhao S, et al. RSC Advances,2018,8,34126.34 Qiu H W, Patel R B, Damavarapu R S, et al. CrystEngComm,2015,17(22),4080.35 Cui Q Z, Jiao Q J, Liu S, et al. Chinese Journal of Energetic Materials,2009,17(6),685(in Chinese).崔庆忠,焦清介,刘帅.含能材料,2009,17(6),685.36 Li B, Li Z Q, Luo Q P, et al. Chinese Journal of Explosives & Propellants,2016,39(2),36(in Chinese).李博,李兆乾,罗庆平,等.火炸药学报,2016,39(2),36.37 Yang F, Kang X, Luo J, et al. Scientific Reports,2017,7(1),3730.38 Kim S, Johnston K P. AIChE Journal,1987,33(10),1603.39 Kauffman J F. Analytical Chemistry,2011,68(7),248A.40 Brennecke J F, Eckert C A. AIChE Journal,1989,35(9),1409.41 Silva R P F F D, Rochasantos T A P, Duarte A C. Trends in Analytical Chemistry,2016,76,40.42 Kim J T, Kim H L, Ju C S. Korean Journal of Chemical Engineering,2010,27(4),1139.43 Cai J G, Deng X. Chinese Journal of Explosives & Propellants,2003(4),71(in Chinese).蔡建国,邓修.火炸药学报,2003(4),71.44 Zhu K, Li G P, Luo Y J. Chinese Journal of Energetic Materials,2012,20(4),445(in Chinese).朱康,李国平,罗运军.含能材料,2012,20(4),445.45 Wang B G, Zhang J L, Chen Y F, et al. Chinese Journal of Explosives & Propellants,2006,29(3),54(in Chinese).王保国,张景林,陈亚芳,等.火炸药学报,2006,29(3),54.46 Bakker F W. Drying Technology,1986,4(2),307.47 Ye B Y, An C W, Wang J Y, et al. RSC Advances,2017,7,35411.48 Li H, An C, Guo W, et al. Propellants,Explosives,Pyrotechnics,2015,40(5),652.49 An Chongwei, Li Hequn, Ye Baoyun, et al. Journal of Nanomaterials,2017,2017(5),1.50 Spitzer D, Risse B, Schnell F, et al. Scientific Reports,2014,4,6575.51 Deng P, Liu Y, Luo P, et al. Materials Letters,2017,194,56. 52 Wang J, Zheng B, Qiao Z, et al. Applied Surface Science,2018,442,767.53 Gao B, Wang D, Zhang J, et al. Journal of Materials Chemistry A,2014,2(47),19969.54 Ke X, Zhou X, Gao H, et al. Materials & Design,2018,140,179.55 Zhang T, Wang Z, Li G, et al. Journal of Solid State Chemistry,2015,230(1),1.56 Wang X. Chinese Journal of Explosives & Propellants,2006,29(2),29(in Chinese).王昕.火炸药学报,2006,29(2),29.57 Ng Hsiao Yen, Lee Yiew Wang. Propellants, Explosives, Pyrotechnics,2012,37(2),143.58 Yanagi K, Miyata Y, Kataura H. Advanced Materials,2006,18(4),437.59 Plessis M D. Sensors and Actuators A (Physical),2007,135(2),666.60 Chen R, Luo Y, Sun J, et al. Propellants, Explosives, Pyrotechnics,2012,37(4),422.61 Li G P, Shen L H, Zheng B M, et al. Advanced Materials Research,2014,924,5.62 Wang Y, Song X, Song D, et al. Journal of Hazardous Materials,2016,312,73.63 Teng Chen, Wei Jiang, Ping Du, et al. RSC Advances,2017,7,5957.64 Umbrajkar S M, Seshadri S, Schoenitz M, et al. Journal of Propulsion and Power,2008,24(2),192.65 Badiola C, Zhu X, Schoenitz M, et al. In:AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. America,2013. 66 Fischer S H, Grubelich M C. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications, Defense Technical Information Center,1996.67 Thiruvengadathan R, Chung S W, Basuray S, et al. Langmuir the ACS Journal of Surfaces & Colloids,2014,30(22),6556.68 Yang F, Kang X, Luo J, et al. Scientific Reports,2017,7(1),3730.69 Zakiyyan N, Wang A, Thiruvengadathan R, et al. Combustion & Flame,2018,187,1.70 Dai J, Xu J, Wang F, et al. Materials & Design,2018,143,93.71 Smeu M, Zahid F, Ji W, et al. Journal of Physical Chemistry C,2011,115(22),10985.72 Khabashesku V N, Margrave J L. Chemical Reviews,2006,106(3),1105.73 Green R E. American Journal of Orthodontics & Dentofacial Orthopedics,2010,138(5),623.74 Poper K H, Collins E S, Pantoya M L, et al. Journal of Electrostatics,2014,72(5),428.75 Pelletier V, Bhattacharyya S, Knoke I, et al. Advanced Functional Materials,2010,20(18),3168.76 Guo R, Hu Y, Shen R, et al. Chemical Engineering Journal,2012,212(47),36.77 Sharma M, Sharma V. Philosophical Magazine,2017,97(22),1.78 Bard A J, Mccord P, Yau S L. Science,1992,257,68.79 Lazarouk S K, Dolbik A V. Semiconductors,2005,39(8),881.80 Wayne C, Luke C, Anant K S. Chemical Physics Letters,2008,464,198.81 Monuko du Plessis. Materials Science and Engineering B,2007,106,21.82 Becker C R, Apperson S, Morris C J, et al. Nano Letters,2011,11(2),803.83 Wang S, Shen R, Ye Y, et al. Nanotechnology,2012,23(43),435701.