Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2932-2939    https://doi.org/10.11896/j.issn.1005-023X.2018.17.006
  无机非金属及其复合材料 |
碳纳米管表面处理及其在铜基复合材料中的应用
王婧雯, 张静静, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
Process in Surface Treatment of Carbon Nanotubes and Its Applications to Copper Matrix Composites
WANG Jingwen, ZHANG Jingjing, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 2290KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管因特殊结构带来的优异性能而被海内外学者广泛关注,以碳纳米管为增强相制备铜基复合材料是使铜基导体同时具有高强度和高导电性能的有效途径。然而,由于碳纳米管表面能高、表面反应活性低,碳纳米管/铜复合材料制备的过程中存在增强体分散性差和界面结合强度弱两大问题,从而阻碍了复合材料高性能的实现。在碳纳米管/铜复合材料的制备过程中,采用适当的方法对碳纳米管进行表面处理能改变碳纳米管的表面结构和反应活性,在改善碳纳米管的分散性的同时增强碳纳米管与铜基体的界面结合,从而提高碳纳米管的增强效率,保证复合材料良好的综合性能。
   然而,表面处理过程可能会破坏碳纳米管的结构完整性,影响碳纳米管的本征性能,进而影响其增强效果,或可能在基体中引入其他杂质,影响复合材料的导电和导热性能。因此,在进行表面处理时应综合考虑其对碳纳米管结构性能及复合材料增强作用的影响。近年来,研究者们通过优化碳纳米管表面处理工艺突破了碳纳米管/铜复合材料在制备过程的难点,在保证铜基体优异的导电、导热性能的同时,大幅提高了碳纳米管/铜复合材料的力学性能。
   碳纳米管表面处理工艺类型大致可分为机械球磨、化学表面改性、表面镀层和联合表面处理四类。传统的机械球磨表面处理对碳纳米管的结构破坏较大;化学表面改性又分为共价表面改性和非共价表面改性,非共价表面改性在保持碳纳米管完整的管状结构和优异性能的同时,提高了碳纳米管在溶液中的分散性,但用于复合材料制备时会给基体引入有机杂质,影响复合材料性能;共价表面改性和表面镀层是铜基复合材料制备过程中最为常用和有效的表面处理方法,其能够在提高碳纳米管在基体中的分散性能的同时改善碳纳米管表面的反应活性,从而形成碳纳米管和铜基体之间强度较高的反应结合界面,实现碳纳米管/铜复合材料高强高导的综合性能。此外,可通过综合利用各种表面处理方法,结合各表面处理工艺的优势,获得更为优异的改性效果。
   本文从碳纳米管表面处理工艺的基本类型以及碳纳米管表面处理对铜基复合材料结构和性能的影响两方面阐述了碳纳米管表面处理在铜基复合材料中的应用和研究进展,并对其未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王婧雯
张静静
范同祥
关键词:  碳纳米管  表面处理工艺  铜基复合材料    
Abstract: The excellent properties of carbon nanotubes (CNTs) derived from the special structure have attracted extensive attentions from researchers at home and abroad. The preparation of CNTs reinforced Cu matrix composites is an effective way to simultaneously achieve high strength and high conductivity of the copper conductor. Nonetheless, the high specific surface energy and poor reaction activity of CNTs have brought about two great challenges during the preparation of the CNTs/Cu composites, namely the agglomeration of CNTs and the poor interfacial bonding of the composites, which hinders the realization of high performance of CNTs/Cu composites. Surface treatment of CNTs can improve the surface structure and reactivity of CNTs, and further achieve a uniform CNTs dispersion and a strong interface bonding in the copper matrix composites, thus enhancing the efficiency of CNTs and high performance CNTs/Cu composites can be obtained.
   However, surface treatment may degrade the intrinsic properties and reinforcement efficiency of CNTs by damaging their structural integrity. Meanwhile, the impurities introduced by surface treatment may do harm to the electrical and thermal conductivity of the CNTs/Cu composites. As a result, the effects of CNTs surface treatment on both the properties of CNTs and the performance of CNTs/Cu composites should be taken into account seriously. Fortunately, researchers have broken through the key points in the preparation process of CNTs/Cu composites by optimizing the surface treatment process of CNTs in recent years. As a result, the mechanical properties of CNTs/Cu composites have been greatly improved and simultaneously the electrical and thermal conductivity of the CNTs/Cu composites have been achieved.
   Generally, there are four main methods of the surface treatment of CNTs, including mechanical ball milling, chemical surface modification, surface coating and combined surface treatment. Among them, the traditional mechanical ball milling would greatly damage the structure of CNTs. Chemical surface modification can be divided into covalent surface modification and non-covalent surface modification. The non-covalent surface modification can enhance the dispersion of the CNTs in solution while maintain their intact tubular structure and excellent properties. However, when it is applied to preparing the composites, a large number of organic impurities introduced cannot be completely removed, which limits the properties enhancement of the composites. Covalent surface modification and surface coating are the most commonly used and effective surface treatment methods in the preparation of copper matrix composites. They can improve the reactivity and dispersion performance of CNTs in the matrix, thus forming a strong reaction interface between CNTs and copper matrix. As a result, both the mechanical properties and the conductivity of CNTs/Cu composites would be enhanced. Moreover, a variety of surface treatment methods can be jointly used to take full advantage of each me-thod and obtain a better modification effect.
   In this article, research and application progress of surface treatment of carbon nanotubes in copper matrix composites are pre-sented based on different surface treatment approaches of CNTs and their effects on the structure and properties of the copper matrix composites, and the future directions regarding to the surface treatment study are proposed.
Key words:  carbon nanotube    surface treatment    copper matrix composite
                    发布日期:  2018-09-19
ZTFLH:  TB333  
基金资助: 国家重点研发专项课题(2017YFB0703101)
通讯作者:  范同祥: 男,1971年生,博士,教授,研究方向为特种功能金属基复合材料和生物启迪功能材料 Tel:021-54747779 E-mail:txfan@sjtu.edu.cn   
作者简介:  王婧雯:女,1990年生,硕士,研究方向为铜基复合材料 E-mail:yinjiangjingwen@sjtu.edu.cn
引用本文:    
王婧雯, 张静静, 范同祥. 碳纳米管表面处理及其在铜基复合材料中的应用[J]. 材料导报, 2018, 32(17): 2932-2939.
WANG Jingwen, ZHANG Jingjing, FAN Tongxiang. Process in Surface Treatment of Carbon Nanotubes and Its Applications to Copper Matrix Composites. Materials Reports, 2018, 32(17): 2932-2939.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.006  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2932
1 Kim C, Lim B, Kim B, et al. Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements[J].Synthetic Metals,2009,159(5-6):424.
2 Li Y, Xiao Z, Li Z, et al. Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity[J].Journal of Alloys & Compounds,2017,723:1162.
3 Arnaud C, Lecouturier F, Mesguich D, et al. High strength-high conductivity nanostructured copper wires prepared by spark plasma sintering and room-temperature severe plastic deformation[J].Materials Science & Engineering A,2016,649:209.
4 Jayathilaka W A D M, Chinnappan A, Ramakrishna S. A review of properties influencing the conductivity of CNT/Cu composites and their applications in wearable/flexible electronics[J].Journal of Materials Chemistry C,2017,5(36):9209.
5 Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper[J].Science,2004,304(5669):422.
6 Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes[J].Nature,1996,381(6584):678.
7 Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J].Science,2000,287(5453):637.
8 Shukla A K, Nayan N, Murty S V S N, et al. Processing of copper-carbon nanotube composites by vacuum hot pressing technique[J].Materials Science & Engineering A Structural Materials Properties Microstructure & Processing,2013,560(560):365.
9 de Volder M F, Tawfick S H, Baughman R H, et al. Carbon nanotubes: Present and future commercial applications[J].Science,2013,339(6119):535.
10 Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J].Applied Physics Letters,2000,76(20):2868.
11 Habisreutinger S N, Leijtens T, Eperon G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J].Nano Letters,2014,14(10):5561.
12 Pierard N, Fonseca A, Konya Z, et al. Production of short carbon nanotubes with open tips by ball milling[J].Chemical Physics Letters,2001,335(1):1.
13 Tucho W M, Mauroy H, Walmsley J C, et al. The effects of ball milling intensity on morphology of multiwall carbon nanotubes[J].Scripta Materialia,2010,63(6):637.
14 Soares O S G P, Gonçalves A G, Delgado J J, et al. Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts[J].Catalysis Today,2015,249:199.
15 Soares O S G P, Rocha R P, Gonçalves A G, et al. Easy method to prepare N-doped carbon nanotubes by ball milling[J].Carbon,2015,91:114.
16 Cai X L, Wang Z Y, Zhang W Z, et al. Preparation of multiwalled carbon nanotubes embedded in copper composite powders[J].Integrated Ferroelectrics,2015,164(1):122.
17 Bor A, Ichinkhorloo B, Uyanga B, et al. Cu/CNT nanocomposite fabrication with different raw material properties using a planetary ball milling process[J].Powder Technology,2016,323:563.
18 Maqbool A, Hussain M A, Khalid F A, et al. Mechanical characte-rization of copper coated carbon nanotubes reinforced aluminum matrix composites[J].Materials Characterization,2013,86(8):39.
19 Sang W K, Kim T, Kim Y S, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers[J].Carbon,2012,50(1):3.
20 Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical met-hod of opening and filling carbon nanotubes[J].Nature,1994,372(6502):159.
21 Yao Y X, Tan X L, Tan X L, et al. Removal and adsorption of p-nitrophenol from aqueous solutions using carbon nanotubes and their composites[J].Journal of Nanomaterials,2014,2014(1):84.
22 Neubauer E, Kitzmantel M, Hulman M, et al. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J].Composites Science & Technology,2010,70(16):2228.
23 Cha S I, Kim K T, Arshad S N, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J].Advanced Materials,2005,17(11):1377.
24 Cho S, Kikuchi K, Miyazaki T, et al. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites[J].Scripta Materialia,2010,63(4):375.
25 Yang M, Weng L, Zhu H, et al. Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons[J].Carbon,2017,118:250.
26 Garg A, Sinnott S B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes[J].Chemical Physics Letters,1998,295(4):273.
27 Firkowska I, Boden A, Vogt A M, et al. Effect of carbon nanotube surface modification on thermal properties of copper-CNT compo-sites[J].Journal of Materials Chemistry,2011,21(43):17541.
28 Liu C H, Fan S S. Effects of chemical modifications on the thermal conductivity of carbon nanotube composites[J].Applied Physics Letters,2005,86(12):215502.
29 Martin C A, Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J].Polymer,2005,46(3):877.
30 Strano M S, Moore V C, Miller M K, et al. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes[J].Journal of Nanoscience & Nanotechnology,2003,3(1-2):81.
31 Moore V C, Strano M S, Haroz E H, et al. Individually suspended single-walled carbon nanotubes in various surfactants[J].Nano Letters,2003,3(10):1379.
32 Zhang X, Zhang J, Wang R, et al. Cationic surfactant directed polya-niline/CNT nanocables: Synthesis, characterization, and enhanced electrical properties[J].Carbon,2004,42(8-9):1455.
33 O’Connell M J, Bachilo S M, Huffman C B, et al. Band gap fluorescence from individual single-walled carbon nanotubes[J].Science,2002,297(5581):593.
34 Jung M S, Ko Y K, Jung D H, et al. Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites[J].Chemical Physics Letters,2008,457(4-6):352.
35 Park O K, Jeevananda T, Kim N H, et al. Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites[J].Scripta Materialia,2009,60(7):551.
36 Jiang L, Fan G, Li Z, et al. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder[J].Carbon,2011,49(6):1965.
37 Li Z, Jiang L, Fan G, et al. High volume fraction and uniform dispersion of carbon nanotubes in aluminium powders[J].IET Micro & Nano Letters,2010,5(6):379.
38 Chowdhury T, Rohan J F. Influence of carbon nanotubes on the electrodeposition of copper interconnects[J].ECS Transactions,2010,25(38):37.
39 Geng H Z, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films[J].Journal of the American Chemical Society,2007,129(25):7758.
40 Kang P S, Lee I H, Duong D L, et al. Improving the wettability of aluminum on carbon nanotubes[J].Acta Materialia,2011,59(9):3313.
41 Wang F, Arai S, Endo M. Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process[J].Electrochemistry Communications,2004,6(10):1042.
42 Laha T, Kuchibhatla S, Seal S, et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite[J].Acta Materialia,2007,55(3):1059.
43 Li Q, Fan S, Han W, et al. Coating of carbon nanotube with nickel by electroless plating method[J].Japanese Journal of Applied Phy-sics,1997,36(4):L501.
44 Jagannatham M, Sankaran S, Prathap H. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites[J].Applied Surface Science,2015,324:475.
45 Chen X, Xia J, Peng J, et al. Carbon-nanotube metal-matrix compo-sites prepared by electroless plating[J].Composites Science & Technology,2000,60(2):301.
46 Koppad P G, Ram H R A, Kashyap K T. On shear-lag and thermal mismatch model in multiwalled carbon nanotube/copper matrix nanocomposites[J].Journal of Alloys & Compounds,2013,549(2):82.
47 Daoush W M, Lim B K, Mo C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J].Materials Science & Engineering A,2009,s 513-514(11):247.
48 Wang H, Zhang Z H, Hu Z Y, et al. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes[J].Scientific Reports,2016,6:26258.
49 Sahraei A A, Fathi A, Givi M K B, et al. Fabricating and improving properties of copper matrix nanocomposites by electroless copper-coated MWCNTs[J].Applied Physics A,2014,116(4):1677.
50 Huang Jianhua, Sun Xiaogang, Li Jing, et al. Research of carbon nanotubes with electroless plating of cobalt[J].Materials Review,2008,22(z1):109(in Chinese).
黄建华,孙晓刚,李静,等.碳纳米管表面化学镀Co的研究[J].材料导报,2008,22(z1):109.
51 Rajukumar L P, Belmonte M, Slimak J E, et al. Covalent networks: 3D nanocomposites of covalently interconnected multiwalled carbon nanotubes with SiC with enhanced thermal and electrical properties[J].Advanced Functional Materials,2015,25(31):4922.
52 Tan Z, Li Z, Fan G, et al. Two-dimensional distribution of carbon nanotubes in copper flake powders[J].Nanotechnology,2011,22(22):225603.
53 Cho S, Kikuchi K, Miyazaki T, et al. Epitaxial growth of chromium carbide nanostructures on multiwalled carbon nanotubes (MWCNTs) in MWCNT-copper composites[J].Acta Materialia,2013,61(2):708.
54 Cho S, Kikuchi K, Kawasaki A et al. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite[J].Nanotechnology,2012,23(31):315705.
55 Estili M, Kawasaki A. Engineering Strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements[J].Advanced Materials,2010,22(5):607.
56 Kim K T, Cha S I, Gemming T, et al. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites[J].Small,2008,4(11):1936.
57 Cha S I, Kim K T, Arshad S N, et al. Field-emission behavior of a carbon-nanotube-implanted Co nanocomposite fabricated from pearl-necklace-structured carbon nanotube/Co powders[J].Advanced Materials,2010,18(5):553.
58 Cha S I, Kim K T, Lee K H, et al. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process[J].Scripta Materialia,2005,53(7):793.
59 Park M, Kim B H, Kim S, et al. Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups[J].Carbon,2011,49(3):811.60 Cho S, Kikuchi K, Kawasaki A. On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite[J].Acta Materialia,2012,60(2):726.
61 Nie J, Jia C, Jia X, et al. Fabrication, microstructures, and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes[J].Rare Metals,2011,30(4):401.
62 Akbarpour M R. Analysis of load transfer mechanism in Cu reinforced with carbon nanotubes fabricated by powder metallurgy route[J].Journal of Materials Engineering & Performance,2016,25(5):1.
63 Chen B, Li S, Imai H, et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests[J].Composites Science & Technology,2015,113:1.
64 Wang F C, Zhang Z H, Sun Y J, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites[J].Carbon,2015,95:396.
65 Kim K T, Cha S I, Hong S H. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites[J].Materials Science & Engineering A,2007,449(12):46.
66 Kim K T, Eckert J, Menzel S B, et al. Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites[J].Applied Physics Letters,2008,92(12):31.
67 Xue Z W, Wang L D, Zhao P T, et al. Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion[J].Materials & Design,2012,34:298.
68 Arai S, Saito T, Endo M. Effects of additives on Cu-MWCNT composite plating films[J].Journal of the Electrochemical Society,2010,157(3):D127.
69 Subramaniam C, Yamada T, Kobashi K, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J].Nature Communications,2013,4(3):2202.
70 Dong Q, Shen L, Cao F, et al. Effect of thermomechanical proces-sing on the microstructure and properties of a Cu-Fe-P alloy[J].Journal of Materials Engineering & Performance,2015,24(4):1531.
71 Shangina D, Maksimenkova Y, Bochvar N, et al. Influence of alloying with hafnium on the microstructure, texture, and properties of Cu-Cr alloy after equal channel angular pressing[J].Journal of Materials Science,2016,51(11):5493.
72 An Z, Toda M, Ono T. Comparative investigation into surface charged multi-walled carbon nanotubes reinforced Cu nanocompo-sites for interconnect applications[J].Composites Part B Enginee-ring,2016,95:137.
[1] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[2] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[3] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[4] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[5] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[6] 王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
[7] 董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
[8] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[9] 张靠民, 谢涛, 赵焱, 董祥, 李如燕. 快速固化碳纳米管/苎麻纤维/环氧树脂复合材料层板的制备与性能[J]. 材料导报, 2018, 32(24): 4370-4373.
[10] 潘会, 胡轶, 兀晓文, 胡帅帅, 张浩茹. ZnO/CNTs复合材料的制备、表征及光催化性能[J]. 材料导报, 2018, 32(24): 4224-4229.
[11] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[12] 贺雍律, 张鉴炜, 黄春芳, 刘钧, 江大志, 鞠苏. CFRP层合板抗分层损伤技术研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2288-2294.
[13] 朱平,邓广辉,邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 149-158.
[14] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[15] 薛勇, 杨保平, 张斌, 张俊彦. 纳米碳材料摩擦学应用的最新进展和未来展望*[J]. 《材料导报》期刊社, 2017, 31(5): 1-8.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed