Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4370-4373    https://doi.org/10.11896/j.issn.1005-023X.2018.24.029
  高分子与聚合物基复合材料 |
快速固化碳纳米管/苎麻纤维/环氧树脂复合材料层板的制备与性能
张靠民1,2, 谢涛2, 赵焱1, 董祥1, 李如燕1
1 昆明理工大学固体废弃物资源化国家工程研究中心, 昆明 650093;
2 昆明理工大学航空学院,昆明 650500
Fabrication of Rapid Cure Carbon Nanotube/Ramie Fiber/Epoxy Resin Composites and Their Properties
ZHANG Kaomin1,2, XIE Tao2, ZHAO Yan1, DONG Xiang1, LI Ruyan1
1 National Engineering Research Center of Waste Resource Recovery, Kunming University of Science and Technology, Kunming 650093;
2 College of Aviation, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 2230KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对植物纤维/树脂基复合材料高性能化问题,本研究以羟基化碳纳米管/无水乙醇分散液预先浸渍苎麻纤维织物,得到了碳纳米管分散均匀的碳纳米管/苎麻纤维多尺度复合织物,并进一步以快速固化环氧树脂为基体,采用真空辅助树脂灌注成型工艺(VARI)制备了碳纳米管改性的苎麻纤维/环氧树脂基复合材料层板(PRFC)。研究结果表明,相比未采用碳纳米管改性的苎麻纤维/环氧树脂复合材料(RFC),PRFC的弯曲强度提高14.7%,冲击强度提高20.9%。相比碳纳米管预先分散于环氧树脂基体中制备的碳纳米管改性苎麻纤维/环氧树脂复合材料(MRFC),PRFC的力学性能提高更显著。同时,PRFC的吸湿性能比MRFC和RFC的明显降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张靠民
谢涛
赵焱
董祥
李如燕
关键词:  复合材料  界面  聚合物  碳纳米管    
Abstract: In order to improve the mechanical property of plant fiber/resin matrix composites, carbon nanotube/absolute ethanol solution was fabricated, and multiscale fabric of carbon nanotube/ramie fiber was fabricated utilizing a pre-impregnation process. Based on a rapid cure epoxy resin, carbon nanotube/ramie fiber/epoxy resin composites (PRFC) was fabricated by vacuum assisted resin infusion molding process. The results showed that the flexural strength and impact strength of PRFC were improved 14.7% and 20.9%, respectively, compared to the composites without carbon nanotube (RFC). Compared to the composites (MRFC) that fabricated by the epoxy resin mixing with carbon nanotube directly, the improvement of mechanical properties of PRFC was more remar-kable. In addition, the water absorption rate of PRFC was obviously lower than those of MRFC and RFC.
Key words:  composites    interface    polymers    carbon nanotube
                    发布日期:  2019-01-23
ZTFLH:  TQ327.9  
基金资助: 国家自然科学基金(51563013)
通讯作者:  谢涛:通信作者,男,1974年生,博士,讲师,从事复合材料成型与性能表征等教学科研工作 E-mail:13577029689@163.com   
作者简介:  张靠民:男,1980年生,博士,讲师,从事聚合物基复合材料教学科研工作 E-mail:zkmbuaa@163.com
引用本文:    
张靠民, 谢涛, 赵焱, 董祥, 李如燕. 快速固化碳纳米管/苎麻纤维/环氧树脂复合材料层板的制备与性能[J]. 材料导报, 2018, 32(24): 4370-4373.
ZHANG Kaomin, XIE Tao, ZHAO Yan, DONG Xiang, LI Ruyan. Fabrication of Rapid Cure Carbon Nanotube/Ramie Fiber/Epoxy Resin Composites and Their Properties. Materials Reports, 2018, 32(24): 4370-4373.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.029  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4370
1 Fu R R, Cheng B W, Ji X J, et al. Research progress of the preparation and application of cellulose/chitosan composite materials[J].Materials Review A:Review Papers,2016,30(8):124(in Chinese).
付冉冉,程博闻,纪秀杰,等.纤维素/壳聚糖复合材料的制备与应用研究进展[J].材料导报:综述篇,2016,30(8):124.
2 Tao Y B, Li P. Plant fibers filled polyurethane foam composites: A review[J].Materials Review A:Review Papers,2015,29(1):76(in Chinese).
陶毓博,李鹏.植物纤维填充聚氨酯泡沫复合材料的研究进展[J].材料导报:综述篇,2015,29(1):76.
3 Sun J P, Zhang Z J, Wang Q W, et al. Pyrolysis characteristics of wood-plastic composites[J].Chemical Industry and Engineering Progress,2015,34(s1):156(in Chinese).
孙剑平,张志军,王清文,等.木塑复合材料热解特性[J].化工进展,2015,34(s1):156.
4 Rosa I M, Kenny J M, Puglia D, et al. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites[J].Composites Science and Technology,2010,70:116.
5 Koschek K. Design of natural fiber composites utilizing interfacial crystallinity and affinity[J].Composites Part A: Applied Science and Manufacturing,2015,69:21.
6 Shen X, Jia J, Chen C, et al. Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition[J].Journal of Materials Science,2014,49(8):3225.
7 Kushwaha P K, Pandey C N, Kumar R. Study on the effect of carbon nanotubes on plastic composite reinforced with natural fiber[J].Journal of the Indian Academy of Wood Science,2014,11(1):82.
8 Marques M F V, Melo R P, Araujo R S, et al.Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments[J].Journal of Applied Polymer Science,2015,132(12):1.
9 Xu Y, Kawata S, Hosoi K, et al. Thermomechanical properties of silanized kenaf/poly-styrene composites[J].Polymer Letters,2009,3:657.
10 Bledzki A K, Mamun A A, Jaszkiewicz A, et al. Polypropylene composites with enzyme modified abaca fiber[J].Composites Science and Technology,2010,70:854.
11 Meng S H, Yan J, Wang M Q, et al. Surface modifications of carbon nanotubes and their application to composite materials[J].Chemical Industry and Engineering Progress,2014(8):2084(in Chinese).
孟胜皓,闫军,汪明球,等.碳纳米管表面改性及其应用于复合材料的研究现状[J].化工进展,2014(8):2084.
12 Tzounis L, Debnath S, Rooj S, et al. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers[J].Materials & Design,2014,58:1.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[7] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[8] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[9] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[10] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[11] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[12] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[13] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[14] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[15] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed