Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2288-2294    https://doi.org/10.11896/j.issn.1005-023X.2018.13.020
  高分子与聚合物基复合材料 |
CFRP层合板抗分层损伤技术研究进展
贺雍律, 张鉴炜, 黄春芳, 刘钧, 江大志, 鞠苏
国防科技大学空天科学学院,长沙 410090
Progress of Anti-delamination Techniques for Laminated Composites
HE Yonglyu, ZHANG Jianwei, HUANG Chunfang, LIU Jun, JIANG Dazhi, JU Su
College of Aerospace Science and Engineering,National University of Defense Technology, Changsha 410090
下载:  全 文 ( PDF ) ( 2116KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维/聚合物基复合材料(CFRP)具有高比强度、高比模量、性能可设计、结构尺寸稳定性高、耐疲劳、耐腐蚀等优点而被广泛应用于陆、海、空、天等高性能载具中。各类碳纤维复合材料结构中,层合结构是主要结构形式。传统的CFRP层合结构中各铺层之间缺少纤维增强,故而导致CFRP层压板易产生层间分层且抗冲击损伤能力较低,因此层合板抗分层损伤和破坏方法成为关键问题和研究热点。本文综述了层合板抗分层损伤的方法,并对这些方法的适用性、优缺点进行了比较与阐述;重点归纳了利用碳纳米管提升层合板抗分层损伤的研究进展,并对碳纳米管的性能、增韧机理进行了阐述以及碳纳米管的增韧方法和效果进行了综述与归纳,讨论了“碳纳米管层间Z向增韧”进一步提高复合材料层间性能的可能性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺雍律
张鉴炜
黄春芳
刘钧
江大志
鞠苏
关键词:  层合板  分层损伤  层间增韧  碳纳米管    
Abstract: Carbon fiber reinforced plastics (CFRP) are widely applied in high performance vehicles due to their excellent nature, namely, high specific strength and modulus, tailorable mechanical properties, fatigue and corrosion resistance, and dimensional stability. Among all the CFRP components, laminated structure are most widely applied. However, due to the lack of reinforcement fibers within the interlaminar zone, laminated CFRP are highly susceptive to delamination and low velocity impact damage. Based on this background , the research progress of laminated plate anti-delamination damage methods is reviewed in this paper, the applicability, advantages and disadvantages of these methods are compared and expounded, and the research progress of using carbon nanotubes (CNTs) to lift laminated plates against delamination damage is summarized. The properties and toughening mechanism of carbon nanotubes, the toughening methods and effects of carbon nanotubes are summarized, and the possibility of further improving interlaminar properties of carbon nanotubes is discussed.
Key words:  laminate    delamination    interlaminar toughening    carbon nanotube
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB332  
基金资助: 国家自然科学基金(U1537101;11202231);湖南省自然科学基金(2017JJ3354)
通讯作者:  江大志:通信作者,男,1963年生,教授,主要从事聚合物基复合材料及其结构设计相关研究 E-mail:jiangdz@nudt.edu.cn 鞠苏:通信作者,男,1982年生,副教授,主要从事超轻复合材料桁架设计相关研究 E-mail:suju-nudt@nudt.edu.cn   
作者简介:  贺雍律:男,1991年生,博士研究生,主要从事纳米增强聚合物基复合材料研究 E-mail:yonglyu.he@foxmail.com
引用本文:    
贺雍律, 张鉴炜, 黄春芳, 刘钧, 江大志, 鞠苏. CFRP层合板抗分层损伤技术研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2288-2294.
HE Yonglyu, ZHANG Jianwei, HUANG Chunfang, LIU Jun, JIANG Dazhi, JU Su. Progress of Anti-delamination Techniques for Laminated Composites. Materials Reports, 2018, 32(13): 2288-2294.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.020  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2288
1 Chen J, Takezono S, Nagata M, et al. Influence of stacking sequence on the damage growth in quasi-isotropic CFRP laminates[J].Journal of Mechanical Strength,2003,7(3):178.
2 Mittelstedt C, Becker W. Interlaminar stress concentrations in la-yered structures: Part I-A selective literature survey on the free-edge effect since 1967[J].Journal of Composite Materials,2004,38(12):1037.
3 Sihn S, Kim R Y, Kawabe K, et al. Experimental studies of thin-ply laminated composites[J].Composites Science and Technology,2007,67(6):996.
4 Tomohiro Yokozeki, Akiko Kuroda, Akinori Yoshimura. Damage characterization in thin-ply composite laminates under out-of-plane transverse loads[J]. Composite structures,2010,93:49.
5 Sasayama H, Kawabe K, Tomoda S, et al. Effect of lamina thickness on first ply failure in multi-directionally laminated composites[C]∥Proceedings of the 8th Japan International SAMPE Sympo-sium & Exhibition (JISSE-8). Tokyo,2003:142.
6 Guillamet G, Turon A, Costa J, et al. A quick procedure to predict free-edge delamination in thin-ply laminates under tension[J].Engineering Fracture Mechanics,2016,168:28.
7 Ivanov D S, Lomov S V, Bogdanovich A E, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results[J].Composites Part A Applied Science & Ma-nufacturing,2009,40(8):1144.
8 Khokar N. 3D Fabric-forming processes: Distinguishing between 2D-weaving, 3D-weaving and an unspecified non-interlacing process[J].Journal of the Textile Institute,1996,87(1):97.
9 Lomov S V, Bogdanovich A E, Ivanov D S, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results[J].Composites Part A Applied Science & Manufacturing,2009,40(8):1134.
10 Cheng X, Yang K, Hu R, et al. Tensile fatigue damage and its mechanism of stitched composite laminates[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(1):132(in Chinese).
程小全,杨琨,胡仁伟,等.缝合复合材料层合板拉伸疲劳损伤及其机理[J].力学学报,2010,42(1):132.
11 Bodyalo N N, Kogan A G. Fabrication of composite sewing thread using polyester microfibres[J].Fibre Chemistry,2005,37(2):154.
12 Saravanan R, Gopalakrishnan T, Jayakrishnamoorthy P. Experimental investigation of influence of sewing type-Z axis reinforcement on epoxy/glass fibre composite[J].Journal of Advances in Mechanical Engineering and Science,2016,2(2):20.
13 Cartié D D R, Troulis M, Partridge I K. Delamination of Z-pinned carbon fibre reinforced laminates[J].Composites Science & Techno-logy,2006,66(6):855.
14 Dai S C, Yan W, Liu H Y, et al. Experimental study on Z-pin bridging law by pullout test[J].Composites Science & Technology,2004,64(16):2451.
15 Jin T, Zhuo Z, Li B. A study on low-velocity impact damage of Z-pin reinforced laminates[J].Journal of Mechanical Science and Technology,2007,21(12):2125.
16 Vaidya U K, Kamath M V, Hosur M V, et al. Low-velocity impact response of cross-ply laminated sandwich composites with hollow and foam-filled Z-pin reinforced core[J].Journal of Composites Technology & Research,1999,21(2):84.
17 Zhang X, Hounslow L, Grassi M. Improvement of low-velocity impact and compression-after-impact performance by Z-fibre pinning[J].Composites Science & Technology,2006,66(15):2785.
18 Mouritz A P. Review of Z-pinned composite laminates[J].Composites Part A Applied Science & Manufacturing,2007,38(12):2383.
19 Mittelstedt C, Becker W. Free-edge effects in composite laminates[J].Applied Mechanics Review,2007,60(5):217.
20 Chan W S, Ochoa O O. Edge delamination resistance by a crictical ply termination[J].Key Engineering Materials,1991,37:285.
21 Howard W E, Gossard T, Jones R M. Composite laminate free-edge reinforcement with U-shaped caps. Part Ⅰ-Stress analysis[J].Aiaa Journal,1989,27(5):610.
22 Dong H, Yi X, An X, et al. Development of interleaved fiber-reinforced polymer matrix composite[J].Acta Materiae Compositae Sinica,2014,31(2):273(in Chinese).
董慧民,益小苏,安学锋,等.纤维增强热固性聚合物基复合材料层间增韧研究进展[J].复合材料学报,2014,31(2):273.
23 Hsiao H, Ni C, Wu M, et al. A novel optical technique for observation of global particle distribution in toughened composites[J].Composites Part A Applied Science and Manufacturing,2012,43(9):1523.
24 Zhang J, Yang T, Lin T, et al. Phase morphology of nanofibre interlayer: Critical factor for toughening carbon/epoxy composites[J].Composites Science and Technology,2012,72(2):256.
25 Yun N, Won Y, Kim S. Toughening of carbon fiber/epoxy compo-site by inserting polysulfone film to form morphology spectrum[J].Polymer,2004,45(20):6953.
26 Jiao G, Ning R, Lu Z, et al. A study on interleaved composites[J].Aerospace Materials & Technology,2001,31(4):36(in Chinese).
矫桂琼,宁荣昌,卢智先,等.层间增韧复合材料研究[J].宇航材料工艺,2001,31(4):36.
27 Zhang M, An X, Tang B, et al. Phase structure of a toughened epoxy system[J].Acta Materiae Compositae Sinica,2007,24(1):13(in Chinese).
张明,安学锋,唐邦铭,等.增韧环氧树脂相结构[J].复合材料学报,2007,24(1):13.
28 Thostenson E T, Li C, Chou T W. Nanocomposites in context[J].Composites Science & Technology,2005,65(3-4):491.
29 Thostenson E T, Ren Z, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: A review[J].Composites Science & Technology,2001,61(13):1899.
30 Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J].Science,2000,287(5453):637.
31 Chou T W, McCullough R L, Pipes R B. Composites[J]. Scientific American,1986,255(4):193.
32 Thostenson E T, Chou T W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization[J].Journal of Physics D Applied Physics,2002,35(16):L77.
33 Bradshaw R D, Fisher F T, Brinson L C. Fiber waviness in nanotube-reinforced polymer composites—Ⅱ: Modeling via numerical approximation of the dilute strain concentration tensor[J].Composites Science & Technology,2003,63(11):1705.
34 Fisher F T, Bradshaw R D, Brinson L C. Fiber waviness in nanotube-reinforced polymer composites—Ⅰ: Modulus predictions using effective nanotube properties[J].Composites Science & Technology,2003,63(11):1689.
35 Jiang C. Interaction mechanism between carbon nanotube and epoxy resin and its effect on glass transition temperature and impact toughness[D].Changsha: National University of Defense Technology,2016(in Chinese).
蒋彩.碳纳米管与环氧树脂的作用机制及对玻璃化转变温度和韧性的影响[D].长沙:国防科技大学,2016.
36 Chandrasekaran V, Advani S, Santare M. Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites[J].Carbon,2010,48(13):3692.
37 Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functiona-lization of carbon nanotubes for polymer-based nanocomposites: A review[J].Composites Part A Applied Science and Manufacturing,2010,41(10):1345.
38 Bekyarova E, Thostenson E T, Yu A, et al. Functioinalized single-walled carbon nanotubes for carbon fiber-epoxy composites[J].Journal of Physical Chemistry C,2007,111(48):17865.
39 Gojny F H, Wichmann M H G, Köpke U, et al. Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughne ss at low nanotube content[J].Composites Science & Technology,2004,64(15):2363.
40 Gojny F H, Wichmann M H G, Fiedler B, et al. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites[J].Composites Part A Applied Science and Manufacturing,2005,36(11):1525.
41 Fan Z, Santare M, Advani S G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes[J].Composites Part A Applied Science and Manufactu-ring,2008,39(3):540.
42 Fan Z, Advani S G. Characterization of orientation state of carbon nanotubes in shear flow[J].Polymer,2005,46(14):5232.
43 Ashrafi B, Guan J, Mirjalili V, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes[J]. Composites Science & Technology,2011,71(13):1569.
44 Thostenson E T, Li W, Wang D, et al. Carbon nanotube/carbon fiber hybrid multiscale composites[J].Journal of Applied Physics,2002,91(9):6034.
45 Bekyarova E, Thostenson E T, Yu A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J].Langmuir,2007,23(7):3970.
46 He X D, Zhang F H, Wang R G, et al. Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers[J].Carbon,2007,45(13):2559.
47 Wicks S S, Villoria R G D, Wardle B L. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes[J].Composites Science & Technology,2010,70(1):20.
48 Wicks S S, Wang W, Williams M R, et al. Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes[J].Composites Science & Technology,2014,100(100):128.
49 Li Y, Hori N, Arai M, et al. Improvement of interlaminar mechanical properties of CFRP laminates using VGCF[J].Composites Part A Applied Science and Manufacturing,2009,40(12):2004.
50 Arai M, Noro Y, Sugimoto K, et al. Mode I and mode II interlaminar fracture toughness of CFRP laminates toughned by carbon nanofiber interlayer[J].Composites Science & Technology,2008,68(2):516.
51 Zhu S, Su C, Lehoczky S, et al. Carbon nanotube growth on carbon fibers[J].Diamond and Related Materials,2003,12(10-11):1825.
52 Sun L, Warren G, Sue H. Partially cured epoxy/SWCNT thin films for the reinforcement of vacuum-assisted resin-transfer-molded composites[J].Carbon,2010,48(8):2364.
53 Khan S, Kim J. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J].Carbon,2012,50(14):5265.
54 Stahl J, Bogdanovich A, Bradford P D. Carbon nanotube shear-pressed sheet interleaves for Mode I interlaminar fracture toughness enhancement[J].Composites Part A Applied Science and Manufacturing,2016,80:127.
55 Liu G, Hu X, Zhang P, et al. Carbon nanotube film interlayer toughened carbon fiber reinforced epoxy resin hybrid composites[J].Acta Polymerica Sinica,2013(10):1334(in Chinese).
刘刚,胡晓兰,张朋,等.碳纳米管膜层间改性碳纤维/环氧树脂复合材料[J].高分子学报,2013(10):1334.
56 Deng H, Wang L, Feng Y, et al. Effect of carbon nanotube film interlayer toughening on mechanical properties of carbon fiber reinforced composite[J].Aerospace Materials & Technology,2015(5):31(in Chinese).
邓火英,王立敏,冯奕钰,等.碳纳米管膜层间增韧对碳纤维复合材料力学性能的影响[J].宇航材料工艺,2015(5):31.
57 Xu H, Tong X, Zhang Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J].Composites Science & Technology,2016,127:113.
58 Garcia E J, Wardle B L, John H. Joining prepreg composite interfaces with aligned carbon nanotubes[J].Composites Part A Applied Science and Manufacturing,2008,39(6):1065.
59 Villoria R, Hallander P, Ydrefors L, et al. In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement[J].Composites Science & Technology,2016,133:33.
[1] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[2] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[3] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[4] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[5] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[6] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[7] 王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
[8] 董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
[9] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[10] 张靠民, 谢涛, 赵焱, 董祥, 李如燕. 快速固化碳纳米管/苎麻纤维/环氧树脂复合材料层板的制备与性能[J]. 材料导报, 2018, 32(24): 4370-4373.
[11] 潘会, 胡轶, 兀晓文, 胡帅帅, 张浩茹. ZnO/CNTs复合材料的制备、表征及光催化性能[J]. 材料导报, 2018, 32(24): 4224-4229.
[12] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[13] 王婧雯, 张静静, 范同祥. 碳纳米管表面处理及其在铜基复合材料中的应用[J]. 材料导报, 2018, 32(17): 2932-2939.
[14] 朱平,邓广辉,邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 149-158.
[15] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed