Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4224-4229    https://doi.org/10.11896/j.issn.1005-023X.2018.24.003
  无机非金属及其复合材料 |
ZnO/CNTs复合材料的制备、表征及光催化性能
潘会, 胡轶, 兀晓文, 胡帅帅, 张浩茹
新疆师范大学化学化工学院,乌鲁木齐830054
Preparation, Characterization and Photocatalytic Properties of ZnO/CNTs Composites
PAN Hui, HU Yi, WU Xiaowen, HU Shuaishuai, ZHANG Haoru
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054
下载:  全 文 ( PDF ) ( 2647KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法制备了一系列氧化锌和碳纳米管的复合材料(ZnO/CNTs),详细考察了碳纳米管的含量对复合材料光催化性能的影响。利用X射线衍射仪、紫外-可见漫反射吸收光谱、扫描电子显微镜、X射线能谱、透射电子显微镜、X射线光电子能谱和氮气吸附-脱附等测试手段对样品的结构、形貌和光学性质进行了表征,并用亚甲基蓝溶液模拟污染物,评价了ZnO/CNTs复合材料的光催化性能。结果表明:添加CNTs提高了ZnO的比表面积,增强了ZnO的可见光吸收。ZnO/CNTs复合材料较纯ZnO具有更高的光催化活性,并且随着CNTs含量的增加,ZnO/CNTs复合材料的光催化活性呈先增加后减小的趋势。当CNTs的含量为0.3%(质量分数)时,ZnO/CNTs复合材料的光催化活性最高,经过50 min光照后,亚甲基蓝的降解率达到了96.2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘会
胡轶
兀晓文
胡帅帅
张浩茹
关键词:  ZnO  碳纳米管  复合材料  光催化    
Abstract: A series of ZnO/CNTs composite samples were prepared by hydrothermal method. The influence of CNTs content on the photocatalytic properties of ZnO/CNTs composites were investigated in detail. The crystalline structures, morphologies and light absorption properties of the ZnO/CNTs composites were analysed using X-ray diffractometer, UV-vis spectrophotometer, scanning electron microscopy, X-ray energy dispersive spectroscope, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption measurement, respectively. In this work, methylene blue was used as the model substance to evaluate the photocatalytic activity of ZnO/CNTs composites. The results showed that the addition of CNTs could enhance BET surface area and light absorption in visible light region of ZnO. Compared to pure ZnO, the photocatalytic efficiencies of ZnO/CNTs composites were greatly improved. In addition, with the increase of CNTs content, the photocatalytic efficiencies of ZnO/CNTs composites increase firstly and then decrease. The best performance is achieved with the ZnO/CNTs composites containing 0.3wt% CNTs, and the photocatalytic degradation of methylene blue achieves 96.2% in 50 min under the irradiation of light.
Key words:  ZnO    CNTs    composites    photocatalysis
                    发布日期:  2019-01-23
ZTFLH:  O643  
基金资助: 自治区高校科研计划项目青年教师科研培育基金(XJEDU2016S062);新疆师范大学大学生创新训练项目(201710762044)
作者简介:  潘会:女,1986年生,博士,讲师,主要从事无机材料、多相催化等研究 E-mail:panhui86@163.com
引用本文:    
潘会, 胡轶, 兀晓文, 胡帅帅, 张浩茹. ZnO/CNTs复合材料的制备、表征及光催化性能[J]. 材料导报, 2018, 32(24): 4224-4229.
PAN Hui, HU Yi, WU Xiaowen, HU Shuaishuai, ZHANG Haoru. Preparation, Characterization and Photocatalytic Properties of ZnO/CNTs Composites. Materials Reports, 2018, 32(24): 4224-4229.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.003  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4224
1 Thi V H, Lee B K. Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation[J].Materials Research Bulletin,2017,96(3):171.
2 Zhao Y R, Ma J Z, Liu J L. Research progress on visible-light responding ZnO-based nanocomposite photocatalysts[J].Journal of Materials Engineering,2017,45(6):129(in Chinese).
赵燕茹,马建中,刘俊莉.可见光响应型ZnO基纳米复合光催化材料的研究进展[J].材料工程,2017,45(6):129.
3 Byzynski G, Pereira A P, Volanti D P, et al. High-performance ultraviolet-visible driven ZnO morphologies photocatalyst obtained by microwave-assisted hydrothermal method[J].Journal of Photoche-mistry and Photobiology A: Chemistry,2018,353:358.
4 Chang X T, Li Z L, Zhai X X, et al. Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts[J].Materials & Design,2016,98:324.
5 Ameen S, Akhtar M S, Seo H K, et al. An electrochemical sensing platform based on hollow mesoporous ZnO nanoglobules modified glassy carbon electrode: Selective detection of piperidine chemical[J].Chemical Engineering Journal,2015,270:564.
6 Chen Y, Zhang P, Wang X L. Preparation and photocatalytic activity of porous ZnS/ZnO microspheres assembled from nanosheets[J].Materials Review B: Research Papers,2016,30(8):50(in Chinese).
陈燕,张萍,王晓玲.ZnS/ZnO纳米片组装的多孔微球的制备及光催化性能研究[J].材料导报:研究篇,2016,30(8):50.
7 Zhang L X, Li N, Jiu H F, et al. ZnO-reduced grapheme oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2[J].Ceramics International,2015,41:6256.
8 Ong C B, Ng L Y, Mohammad A W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications[J].Renewable & Sustainable Energy Reviews,2018,81(1):536.
9 Iijima S. Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56.
10 Sui J H, Li J, Li Z, et al. Synthesis and characterization of one-dimensional magnetic photocatalytic CNTs/Fe3O4-ZnO nanohybrids[J].Materials Chemistry and Physics,2012,134:229.
11 Groβmann D, Dreierb A, Lehmann C, et al. Methanol synthesis over Cu-ZnO aggregates supported on carbon nanotubes[J].Applied Catalysis A: General,2015,504:351.
12 Rodrigues J, Mata D, Pimentel A, et al. One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties[J].Materials Science and Engineering B,2015,195:38.
13 Ahmad M, Ahmed E, Hong Z L, et al. Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes[J].Applied Surface Science,2013,285:702.
14 Ahmad M, Ahmed E, Hong Z L, et al. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts[J].Ultrason Sonochem,2014,21:761.
15 Song Y N, Guan W S. Photocatalytic degradation of antibiotic with ZnO/CNTs composite photocatalyst[J].Applied Chemical Industry,2012,41(7):1172(in Chinese).
宋优男,关卫省.ZnO/碳纳米管复合光催化材料对抗生素的光催化降解[J].应用化工,2012,41(7):1172.
16 Lu Y H, Xu Y H, Zhang S L, et al. Visible-light photocatalytic activity of ZnO enhanced by single-walled carbon nanotubes[J].CIESC Journal,2014,65(7):2855(in Chinese).
卢艳红,徐艳红,张素玲,等.单壁碳纳米管显著增强的ZnO可见光催化活性[J].化工学报,2014,65(7):2855.
17 Liu X J, Pan L K, Lv T, et al. Enhanced photocatalytic reduction of Cr(Ⅵ) by ZnO-TiO2-CNTs composites synthesized via microwave-assisted reaction[J].Journal of Molecular Catalysis A: Chemical,2012,363-364:417.
18 Zhang W Z, Zhang X L, Li L, et al. The preparation of nanocomposite ZnO-TiO2 by CTAB-assisted and photocatalytic degradation rhodamine B with multiple modes[J].Journal of Molecular Catalysis,2013,27(5):474(in Chinese).
张文治,张秀丽,李莉,等.CTAB作用下纳米复合材料ZnO-TiO2制备与多模式光催化降解罗丹明B[J].分子催化,2013,27(5):474.
19 Osman H, Su Z, Ma X L, et al. Synthesis of ZnO/C nanocomposites with enhanced visible light photocatalytic activity[J].Ceramics International,2016,42:10237.
20 Chaudhary D, Singh S, Vankar V D, et al. ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting[J].Journal of Photochemistry and Photobiology A: Chemistry,2018,351:154.
21 Suroshe J S, Garjie S S. Capacitive behavior of functionalized carbon nanotube/ZnO composites coated on a glassy carbon electrode[J].Journal of Materials Chemistry A,2015,3(30):15650.
22 Moradi M, Haghighi M, Allahyari S. Precipitation dispersion of Ag-ZnO nanocatalyst over functionalized multiwall carbon nanotube used in degradation of acid orange from wastewater[J].Process Safety and Environmental Protection,2017,107:414.
23 Bechambi O, Chalbi M, Najjar W, et al. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity[J].Applied Surface Science,2015,347:414.
24 Sampaio M J, Benyounes A, Serp P, et al. Photocatalytic synthesis of vanillin using N-doped carbon nanotubes/ZnO catalysts under UV-LED irradiation[J].Applied Catalysis A: General,2018,551:71.
25 Miribangul A, Ma X L, Zeng C, et al. Synthesis of TiO2/CNT composites and its photocatalytic activity toward sudan (Ⅰ) degradation[J].Photochemistry and Photobiology,2016,92:523.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[5] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[6] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[7] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[8] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[9] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[10] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[11] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[12] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[13] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[14] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[15] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed