Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 1-8    https://doi.org/10.11896/j.issn.1005-023X.2017.05.001
  材料综述 |
纳米碳材料摩擦学应用的最新进展和未来展望*
薛勇1,2, 杨保平1, 张斌2, 张俊彦2
1 兰州理工大学石油化工学院, 兰州 730050;
2 中国科学院兰州化学物理研究所固体润滑国家重点试验室, 兰州 730000
Tribological Application of Nano-carbon Materials: Recent Progress and Future Prospect
XUE Yong1,2, YANG Baoping1, ZHANG Bin2, ZHANG Junyan2
1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
下载:  全 文 ( PDF ) ( 1832KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来随着富勒烯(C60)、纳米金刚石(Nano diamond)、碳纳米管(Carbon nanotube,CNT)、石墨烯(Graphene)等的相继发现和相关制备技术的成熟,纳米碳材料作为润滑材料的研究已经取得了很大的进步。首先介绍了纳米碳材料的分类及其制备方法。其次以C60、纳米金刚石、碳纳米管以及石墨烯为研究对象,系统介绍了它们作为润滑油添加剂、固体润滑薄膜和润滑填料的研究进展,阐述了C60等纳米碳材料的减摩抗磨机制。最后,指出了C60等纳米碳材料作为润滑材料仍需解决的关键问题,并展望了它们在未来摩擦学应用方面的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛勇
杨保平
张斌
张俊彦
关键词:  纳米碳材料  富勒烯  碳纳米管  石墨烯  摩擦学    
Abstract: In recent years, the discover of nano-carbon materials (such as fullerene, nanodiamonds, carbon nanotubes, graphene etc.) and the improvement of their preparation techniques have brought great advance for applying those novel nanomaterials in lubrication field. This review introduces the classification and preparation methods of nano-carbon materials, summarizes the research progress in utilizing fullerene, nanodiamonds, carbon nanotubes and graphene to fabricate lubricating additives, solid lubricating films and lubricating fillers, as well as the anti-friction mechanisms. Finally, it ends in some key issues for nano-carbon materials while serving as lubricating materials, and a prospect over the future development trends.
Key words:  nano-carbon materials    fullerene    carbon nanotubes    graphene    tribological
出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  O469  
基金资助: 国家自然科学基金(51205383);甘肃省自然科学基金(1501RJZA012);中国科学院西部之光;重庆大学机械传动国家重点实验室开放课题
通讯作者:  张斌:,男,1982年生,博士,副研究员,研究方向为固体超滑薄膜构筑及机械减阻节能 E-mail:bzhang@licp.cs.cn   
作者简介:  薛勇:男,1989年生,硕士研究生,研究方向为固体润滑薄膜材料 E-mail:xychina_1989@163.com
引用本文:    
薛勇, 杨保平, 张斌, 张俊彦. 纳米碳材料摩擦学应用的最新进展和未来展望*[J]. 《材料导报》期刊社, 2017, 31(5): 1-8.
XUE Yong, YANG Baoping, ZHANG Bin, ZHANG Junyan. Tribological Application of Nano-carbon Materials: Recent Progress and Future Prospect. Materials Reports, 2017, 31(5): 1-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.001  或          https://www.mater-rep.com/CN/Y2017/V31/I5/1
1 沈曾民. 新型碳材料[M]. 北京: 化学工业出版社,2003:225.
2 Shahnazar S, Bagheri S, Hamid S B A. Enhancing lubricant properties by nanoparticle additives[J]. Int J Hydrogen Energy,2016,41(4):3153.
3 Jariwala D, Sangwan V K, Lauhon L J, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing[J]. Chem Soc Rev,2013,42(7):2824.
4 Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nat Mater,2011,10(8):569.
5 Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: Basics and applications[J]. J Phys D: Appl Phys,2013,47(1):013001.
6 刘吉平, 孙洪强. 碳纳米材料[M]. 北京: 科学出版社,2004:21.
7 Kroto H W, Heath J R, O′Brien S C, et al. C60: Buckminsterfullerene[J]. Nature,1985,318(6042):162.
8 Rubin Y, Parker T C, Khan S I, et al. Precursors to endohedral metal fullerene complexes: Synthesis and X-ray structure of a flexible acetylenic cyclophane C60H18[J]. J Am Chem Soc,1996,118(22):5308.
9 Amsharov K Y, Jansen M. A C78 fullerene precursor: Toward the direct synthesis of higher fullerenes[J]. J Org Chem,2008,73(7):2931.
10 Grieco W J, Howard J B, Rainey L C, et al. Fullerenic carbon in combustion-generated soot[J]. Carbon,2000,38(4):597.
11 Pope C J, Howard J B. Thermodynamic limitations for fullerene formation in flames[J]. Tetrahedron,1996,52(14):5161.
12 Yan Xiaoqin, Zhang Ruizhen, Wei Yinghui, et al. Research developments of the methods for preparing fullerenes [J]. New Carbon Mater,2000,15(3):63(in Chinese).
闫小琴, 张瑞珍, 卫英慧, 等. 富勒烯制备方法研究的进展[J]. 新型炭材料,2000,15(3):63.
13 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56.
14 Ando Y, Zhao X, Inoue S, et al. Mass production of multiwalled carbon nanotubes by hydrogen arc discharge[J]. J Cryst Growth,2002,237:1926.
15 Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chem Phys Lett,1995,243(1):49.
16 Hatta N, Murata K. Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene[J]. Chem Phys Lett,1994,217(4):393.
17 Nikolaev P, Bronikowski M J, Bradley R K, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide[J]. Chem Phys Lett,1999,313(1):91.
18 Yokomichi H, Sakai F, Ichihara M, et al. Carbon nanotubes synthesized by thermal chemical vapor deposition using M(NO3)n·mH2O as catalyst[J]. Physica B: Condensed Matter,2002,323(1):311.
19 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
20 Kang Yong. The development status & trend of China graphene industry[J]. Shanghai Coatings,2015(2):9(in Chinese).
康永. 我国石墨烯产业发展现状及趋势[J]. 上海涂料,2015(2):9.
21 Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nat Nanotechnol,2009,4(4):217.
22 Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium[J]. Nat Mater,2008,7(5):406.
23 Srivastava S K, Shukla A K, Vankar V D, et al. Growth, structure and field emission characteristics of petal like carbon nano-structured thin films[J]. Thin Solid Films,2005,492(1):124.
24 Wang Guangzu, Lian Jinyan. Nanosized carbon materials with pro-mising superiorities and wide applications[J]. Jewelry Sci Technol,2004,16(1):8(in Chinese).
王光祖, 连金彦. 综合性能优异和潜在应用广阔的纳米碳材料[J]. 珠宝科技,2004,16(1):8.
25 Wang Guangzu. Development and application direction of nanodiamond[J]. Super Hard Mater Eng,2008(5):34(in Chinese).
王光祖. 纳米金刚石的发展及其应用前景[J]. 超硬材料工程,2008(5):34.
26 Wang Yuhuang,Huang Qunjian.Laser sputtering generate nanodiamond spherulites[J].Sci China Ser B,1997,27(6):496(in Chinese).
王育煌, 黄群健. 纳米金刚石球晶的激溅射产生[J]. 中国科学 B 辑,1997,27(6):496.
27 Gogotsi Y, Welz S, Ersoy D A, et al. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure[J]. Nature,2001,411(6835):283.
28 Yusa H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure[J]. Diamond Relat Mater,2002,11(1):87.
29 Sun L, Gong J, Zhu Z, et al. Nanocrystalline diamond from carbon nanotubes[J]. Appl Phys Lett,2004,84(15):2901.
30 Xie Feng, Li Lei, Ge Shirong. The progress of new carbon nano-additives tribological properties[J]. Lubric Oil,2013(3):61(in Chinese).
谢凤, 李磊, 葛世荣. 新型碳纳米添加剂的摩擦学性能研究进展[J]. 润滑油,2013(3):61.
31 Zhao Xinying. Study on the onion-like fullerenes nano particles as additive in lubrication oil[D]. Beijing: Beijing University of Chemical Technology,2007(in Chinese).
赵欣颖. 洋葱状富勒烯作为高温润滑油添加剂的研究[D]. 北京: 北京化工大学,2007.
32 Zhang Sen, Li Guolu, Wang Haidou, et al. Research progress on the sulfide solid lubrication coating[J]. Lubric Eng,2012,37(8):119(in Chinese).
张森, 李国禄, 王海斗, 等. 硫化物固体润滑剂的研究现状[J]. 润滑与密封,2012,37(8):119.
33 张会臣,严立. 纳米尺度润滑理论及应用[M]. 北京:化学工业出版社,2005:1.
34 Yan Fengyuan, Jin Zhishan, Zhang Xushou, et al. Study on the tribological behavior of C60/C70 as an oil additive[J]. Tribology,1993,13(1):59(in Chinese).
阎逢元, 金芝珊, 张绪寿, 等. C60/C70作为润滑油添加剂的摩擦学性能研究[J]. 摩擦学学报,1993,13(1):59.
35 Ku B C, Han Y C, Lee J E, et al. Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity[J]. Int J Precis Eng Manuf,2010,11(4):607.
36 Xing M, Wang R, Yu J. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors[J]. Int J Refrig,2014,40:398.
37 Pu J, Mo Y, Wan S, et al. Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for MEMS applications[J]. Chem Commun,2014,50(4):469.
38 Wang C, Yang S, Wang Q, et al. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure[J]. Nanotechnology,2008,19(22):225709.
39 Zhang Jing, Zhang Tao, Wang Hui. Study on friction behavior of C60-copolymer spin-coated films using surface force apparatus[J]. Tribology,2003,23(4):272(in Chinese).
张靖, 张涛, 王慧, 等. C60 共聚物旋涂膜的摩擦特性研究[J]. 摩擦学学报,2003,23(4):272.
40 Shi Xiao, Song Danlu. Fretting tribological properties of Ni-B-C60 nano-composite coating[J]. Lubric Eng,2010,35(10):64(in Chinese).
师晓, 宋丹路. Ni-B-C60 纳米复合化学镀层的微动摩擦学特性[J]. 润滑与密封,2010,35(10):64.
41 Zhao G L, Khosravi E, Yang S Z. Carbon nanotubes-From research to applications[M]. Rijeka:In Tech,2011:27.
42 Ahmadi H, Rashidi A, Nouralishahi A, et al. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant[J]. Int Commun Heat Mass Transf,2013,46:142.
43 Guo Xiaoyan, Peng Yitian, Hu Yuanzhong, et al. The tribological behaviors and mechanism of carbon nanotubes as oil additive[J]. Lubric Eng,2007,32(11):95(in Chinese).
郭晓燕, 彭倚天, 胡元中, 等. 碳纳米管添加剂摩擦学性能研究及机制探讨[J]. 润滑与密封,2007,32(11):95.
44 Jiang Peng, Yao Kefu. Investigation on tribological properties of lubricating oil with carbon nanotubes additive[J]. Tribology,2005,25(5):394(in Chinese).
姜鹏, 姚可夫. 碳纳米管作为润滑油添加剂的摩擦磨损性能研究[J]. 摩擦学学报,2005,25(5):394.
45 Lei Ziheng. Preparation and tribological properties of rare earth treated carbon nanotubes self-assembled monolayers[D]. Shanghai: Shanghai Jiao Tong University,2013(in Chinese).
雷子恒. 稀土改性碳纳米管自组装膜的制备及其摩擦学性能研究[D]. 上海: 上海交通大学,2013.
46 Umeda J, Fugetsu B, Nishida E, et al. Friction behavior of network-structured CNT coating on pure titanium plate[J]. Appl Surf Sci,2015,357:721.
47 Sun Z, Cheng X. Investigation of carbon nanotube-containing film on silicon substrates and its tribological behavior[J]. Appl Surf Sci,2015,355:272.
48 Chen Wu, Duan Haitao, Gu Kali, et al. Tribological properties of MWCNTs reinforced UHMWPE composites[J]. Polym Mater Sci Eng,2015,31(8):62(in Chinese).
陈雾, 段海涛, 顾卡丽, 等. 多壁碳纳米管改性超高分子量聚乙烯的摩擦学性能[J]. 高分子材料科学与工程,2015,31(8):62.
49 Bastwros M M, Esawi A M, Wifi A. Friction and wear behavior of Al-CNT composites[J]. Wear,2013,307(1):164.
50 Pu Jibin, Wang Liping, Xue Qunji. Progress of tribology of graphene and graphene-based composite lubricating materials[J]. Tribology,2014,34(1):93(in Chinese).
蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报,2014,34(1):93.
51 Jia Yuan, Yan Hongxia, Gong Chao, et al. The surface modification of graphene and its application in the friction field[J]. Mater Rev:Rev,2013,27(5):18(in Chinese).
贾园, 颜红侠, 公超, 等. 石墨烯的表面改性及其在摩擦领域中的应用[J]. 材料导报:综述篇, 2013,27(5):18.
52 Senatore A, D′Agostino V, Petrone V, et al. Graphene oxide nanosheets as effective friction modifier for oil lubricant: Materials, methods, and tribological results[J]. ISRN Tribol,2013,2013(1):1395.
53 Lin J, Wang L, Chen G. Modification of graphene platelets and their tribological properties as a lubricant additive[J]. Tribol Lett,2011,41(1):209.
54 Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Graphene-based engine oil nanofluids for tribological applications[J]. ACS Appl Mater Interfaces,2011,3(11):4221.
55 Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces[J]. Carbon,2013,54:454.
56 Won M S, Penkov O V, Kim D E. Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding[J]. Carbon,2013,54:472.
57 Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown graphene:The thinnest solid lubricant[J]. ACS Nano,2011,5(6):5107.
58 Ghazaly A, Seif B, Salem H. Mechanical and tribological properties of AA2124-graphene self lubricanting nanocomposite[J]. Light Met,2013,2013:411.
59 Kandanur S S, Rafiee M A, Yavari F, et al. Suppression of wear in graphene polymer composites[J]. Carbon,2012,50(9):3178.
60 Wang Yonghong. Application of nano-diamond in lubrication technology[C]// Gansu Chemical Society Twenty-fifth Annual Meeting, the Seventh Gansu Exchange of Experience Teaching High School Chemistry Proceedings. Lanzhou,2007:225(in Chinese).
王永红. 纳米金刚石在润滑技术中的应用[C]// 甘肃省化学会第二十五届年会、第七届甘肃省中学化学教学经验交流会论文集. 兰州,2007:225.
61 Zhang Dong, Hu Xiaogang, Tong Yi, et al. The research development of nanodiamond as a lubricating additive[J]. Lubric Oil,2006,21(1):50(in Chinese).
张栋, 胡晓刚, 仝毅, 等. 纳米金刚石用做润滑添加剂的研究进展[J]. 润滑油,2006,21(1):50.
62 Chou C C, Lee S H. Rheological behavior and tribological performance of a nanodiamond-dispersed lubricant[J]. J Mater Process Technol,2008,201(1):542.
63 Chu H Y, Hsu W C, Lin J F. The anti-scuffing performance of diamond nano-particles as an oil additive[J]. Wear,2010,268(7):960.
64 Red′Kin V. Lubricants with ultradisperse diamond-graphite powder[J]. Chem Technol Fuels Oils,2004,40(3):164.
65 Shen Bin, Sun Fanghong, Zhang Zhiming, et al. Fabrication and application of CVD diamond coated cutting tools[J]. Diamond Abras Eng,2011(1):1(in Chinese).
沈彬, 孙方宏, 张志明, 等. CVD 金刚石薄膜涂层整体式刀具的制备与应用[J]. 金刚石与磨料磨具工程,2011(1):1.
66 Zhang Tingfei, Gou Li, Chen Hongyun. Mechanical properties and morphology of nano crystalline diamond film son tungsten carbide spheres[J]. J Synth Cryst,2013,42(6):5(in Chinese).
张廷飞, 芶立, 陈虹运. 硬质合金球上纳米金刚石膜的形貌与力学性能[J]. 人工晶体学报,2013,42(6):5.
67 Hollman P, Björkman H, Alahelisten A, et al. Diamond coatings applied to mechanical face seals[J]. Surf Coat Technol,1998,105(1):169.
68 Qiao Zhijun, Bo Zhenchen, Wang Ning, et al. Tribological properties of PTFE-based composites filled with nanodiamond and PEEK[J]. J Funct Mater,2010,41(10):1838(in Chinese).
乔志军, 薄振辰, 王宁, 等. 纳米金刚石与聚醚醚酮填充改性聚四氟乙烯复合材料的摩擦学性能[J]. 功能材料,2010,41(10):1838.
69 Liu Yunfeng, Zhu Yongwei, Liu Tingting, et al. Friction and wear properties of Ni-P electroless composite coatings with core-shell nanodiamond[J]. Tribology,2013,33(3):267(in Chinese).
刘蕴锋, 朱永伟, 刘婷婷, 等. Ni-P-纳米金刚石黑粉化学复合镀层的摩擦磨损性能[J]. 摩擦学学报,2013,33(3):267.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[4] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[7] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[8] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[9] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[10] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[11] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[12] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[13] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[14] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[15] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed