Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 1-8    https://doi.org/10.11896/j.issn.1005-023X.2017.05.001
  材料综述 |
纳米碳材料摩擦学应用的最新进展和未来展望*
薛勇1,2, 杨保平1, 张斌2, 张俊彦2
1 兰州理工大学石油化工学院, 兰州 730050;
2 中国科学院兰州化学物理研究所固体润滑国家重点试验室, 兰州 730000
Tribological Application of Nano-carbon Materials: Recent Progress and Future Prospect
XUE Yong1,2, YANG Baoping1, ZHANG Bin2, ZHANG Junyan2
1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
下载:  全 文 ( PDF ) ( 1832KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来随着富勒烯(C60)、纳米金刚石(Nano diamond)、碳纳米管(Carbon nanotube,CNT)、石墨烯(Graphene)等的相继发现和相关制备技术的成熟,纳米碳材料作为润滑材料的研究已经取得了很大的进步。首先介绍了纳米碳材料的分类及其制备方法。其次以C60、纳米金刚石、碳纳米管以及石墨烯为研究对象,系统介绍了它们作为润滑油添加剂、固体润滑薄膜和润滑填料的研究进展,阐述了C60等纳米碳材料的减摩抗磨机制。最后,指出了C60等纳米碳材料作为润滑材料仍需解决的关键问题,并展望了它们在未来摩擦学应用方面的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛勇
杨保平
张斌
张俊彦
关键词:  纳米碳材料  富勒烯  碳纳米管  石墨烯  摩擦学    
Abstract: In recent years, the discover of nano-carbon materials (such as fullerene, nanodiamonds, carbon nanotubes, graphene etc.) and the improvement of their preparation techniques have brought great advance for applying those novel nanomaterials in lubrication field. This review introduces the classification and preparation methods of nano-carbon materials, summarizes the research progress in utilizing fullerene, nanodiamonds, carbon nanotubes and graphene to fabricate lubricating additives, solid lubricating films and lubricating fillers, as well as the anti-friction mechanisms. Finally, it ends in some key issues for nano-carbon materials while serving as lubricating materials, and a prospect over the future development trends.
Key words:  nano-carbon materials    fullerene    carbon nanotubes    graphene    tribological
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  O469  
基金资助: 国家自然科学基金(51205383);甘肃省自然科学基金(1501RJZA012);中国科学院西部之光;重庆大学机械传动国家重点实验室开放课题
通讯作者:  张斌:,男,1982年生,博士,副研究员,研究方向为固体超滑薄膜构筑及机械减阻节能 E-mail:bzhang@licp.cs.cn   
作者简介:  薛勇:男,1989年生,硕士研究生,研究方向为固体润滑薄膜材料 E-mail:xychina_1989@163.com
引用本文:    
薛勇, 杨保平, 张斌, 张俊彦. 纳米碳材料摩擦学应用的最新进展和未来展望*[J]. 《材料导报》期刊社, 2017, 31(5): 1-8.
XUE Yong, YANG Baoping, ZHANG Bin, ZHANG Junyan. Tribological Application of Nano-carbon Materials: Recent Progress and Future Prospect. Materials Reports, 2017, 31(5): 1-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.001  或          http://www.mater-rep.com/CN/Y2017/V31/I5/1
1 沈曾民. 新型碳材料[M]. 北京: 化学工业出版社,2003:225.
2 Shahnazar S, Bagheri S, Hamid S B A. Enhancing lubricant properties by nanoparticle additives[J]. Int J Hydrogen Energy,2016,41(4):3153.
3 Jariwala D, Sangwan V K, Lauhon L J, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing[J]. Chem Soc Rev,2013,42(7):2824.
4 Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nat Mater,2011,10(8):569.
5 Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: Basics and applications[J]. J Phys D: Appl Phys,2013,47(1):013001.
6 刘吉平, 孙洪强. 碳纳米材料[M]. 北京: 科学出版社,2004:21.
7 Kroto H W, Heath J R, O′Brien S C, et al. C60: Buckminsterfullerene[J]. Nature,1985,318(6042):162.
8 Rubin Y, Parker T C, Khan S I, et al. Precursors to endohedral metal fullerene complexes: Synthesis and X-ray structure of a flexible acetylenic cyclophane C60H18[J]. J Am Chem Soc,1996,118(22):5308.
9 Amsharov K Y, Jansen M. A C78 fullerene precursor: Toward the direct synthesis of higher fullerenes[J]. J Org Chem,2008,73(7):2931.
10 Grieco W J, Howard J B, Rainey L C, et al. Fullerenic carbon in combustion-generated soot[J]. Carbon,2000,38(4):597.
11 Pope C J, Howard J B. Thermodynamic limitations for fullerene formation in flames[J]. Tetrahedron,1996,52(14):5161.
12 Yan Xiaoqin, Zhang Ruizhen, Wei Yinghui, et al. Research developments of the methods for preparing fullerenes [J]. New Carbon Mater,2000,15(3):63(in Chinese).
闫小琴, 张瑞珍, 卫英慧, 等. 富勒烯制备方法研究的进展[J]. 新型炭材料,2000,15(3):63.
13 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56.
14 Ando Y, Zhao X, Inoue S, et al. Mass production of multiwalled carbon nanotubes by hydrogen arc discharge[J]. J Cryst Growth,2002,237:1926.
15 Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chem Phys Lett,1995,243(1):49.
16 Hatta N, Murata K. Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene[J]. Chem Phys Lett,1994,217(4):393.
17 Nikolaev P, Bronikowski M J, Bradley R K, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide[J]. Chem Phys Lett,1999,313(1):91.
18 Yokomichi H, Sakai F, Ichihara M, et al. Carbon nanotubes synthesized by thermal chemical vapor deposition using M(NO3)n·mH2O as catalyst[J]. Physica B: Condensed Matter,2002,323(1):311.
19 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
20 Kang Yong. The development status & trend of China graphene industry[J]. Shanghai Coatings,2015(2):9(in Chinese).
康永. 我国石墨烯产业发展现状及趋势[J]. 上海涂料,2015(2):9.
21 Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nat Nanotechnol,2009,4(4):217.
22 Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium[J]. Nat Mater,2008,7(5):406.
23 Srivastava S K, Shukla A K, Vankar V D, et al. Growth, structure and field emission characteristics of petal like carbon nano-structured thin films[J]. Thin Solid Films,2005,492(1):124.
24 Wang Guangzu, Lian Jinyan. Nanosized carbon materials with pro-mising superiorities and wide applications[J]. Jewelry Sci Technol,2004,16(1):8(in Chinese).
王光祖, 连金彦. 综合性能优异和潜在应用广阔的纳米碳材料[J]. 珠宝科技,2004,16(1):8.
25 Wang Guangzu. Development and application direction of nanodiamond[J]. Super Hard Mater Eng,2008(5):34(in Chinese).
王光祖. 纳米金刚石的发展及其应用前景[J]. 超硬材料工程,2008(5):34.
26 Wang Yuhuang,Huang Qunjian.Laser sputtering generate nanodiamond spherulites[J].Sci China Ser B,1997,27(6):496(in Chinese).
王育煌, 黄群健. 纳米金刚石球晶的激溅射产生[J]. 中国科学 B 辑,1997,27(6):496.
27 Gogotsi Y, Welz S, Ersoy D A, et al. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure[J]. Nature,2001,411(6835):283.
28 Yusa H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure[J]. Diamond Relat Mater,2002,11(1):87.
29 Sun L, Gong J, Zhu Z, et al. Nanocrystalline diamond from carbon nanotubes[J]. Appl Phys Lett,2004,84(15):2901.
30 Xie Feng, Li Lei, Ge Shirong. The progress of new carbon nano-additives tribological properties[J]. Lubric Oil,2013(3):61(in Chinese).
谢凤, 李磊, 葛世荣. 新型碳纳米添加剂的摩擦学性能研究进展[J]. 润滑油,2013(3):61.
31 Zhao Xinying. Study on the onion-like fullerenes nano particles as additive in lubrication oil[D]. Beijing: Beijing University of Chemical Technology,2007(in Chinese).
赵欣颖. 洋葱状富勒烯作为高温润滑油添加剂的研究[D]. 北京: 北京化工大学,2007.
32 Zhang Sen, Li Guolu, Wang Haidou, et al. Research progress on the sulfide solid lubrication coating[J]. Lubric Eng,2012,37(8):119(in Chinese).
张森, 李国禄, 王海斗, 等. 硫化物固体润滑剂的研究现状[J]. 润滑与密封,2012,37(8):119.
33 张会臣,严立. 纳米尺度润滑理论及应用[M]. 北京:化学工业出版社,2005:1.
34 Yan Fengyuan, Jin Zhishan, Zhang Xushou, et al. Study on the tribological behavior of C60/C70 as an oil additive[J]. Tribology,1993,13(1):59(in Chinese).
阎逢元, 金芝珊, 张绪寿, 等. C60/C70作为润滑油添加剂的摩擦学性能研究[J]. 摩擦学学报,1993,13(1):59.
35 Ku B C, Han Y C, Lee J E, et al. Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity[J]. Int J Precis Eng Manuf,2010,11(4):607.
36 Xing M, Wang R, Yu J. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors[J]. Int J Refrig,2014,40:398.
37 Pu J, Mo Y, Wan S, et al. Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for MEMS applications[J]. Chem Commun,2014,50(4):469.
38 Wang C, Yang S, Wang Q, et al. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure[J]. Nanotechnology,2008,19(22):225709.
39 Zhang Jing, Zhang Tao, Wang Hui. Study on friction behavior of C60-copolymer spin-coated films using surface force apparatus[J]. Tribology,2003,23(4):272(in Chinese).
张靖, 张涛, 王慧, 等. C60 共聚物旋涂膜的摩擦特性研究[J]. 摩擦学学报,2003,23(4):272.
40 Shi Xiao, Song Danlu. Fretting tribological properties of Ni-B-C60 nano-composite coating[J]. Lubric Eng,2010,35(10):64(in Chinese).
师晓, 宋丹路. Ni-B-C60 纳米复合化学镀层的微动摩擦学特性[J]. 润滑与密封,2010,35(10):64.
41 Zhao G L, Khosravi E, Yang S Z. Carbon nanotubes-From research to applications[M]. Rijeka:In Tech,2011:27.
42 Ahmadi H, Rashidi A, Nouralishahi A, et al. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant[J]. Int Commun Heat Mass Transf,2013,46:142.
43 Guo Xiaoyan, Peng Yitian, Hu Yuanzhong, et al. The tribological behaviors and mechanism of carbon nanotubes as oil additive[J]. Lubric Eng,2007,32(11):95(in Chinese).
郭晓燕, 彭倚天, 胡元中, 等. 碳纳米管添加剂摩擦学性能研究及机制探讨[J]. 润滑与密封,2007,32(11):95.
44 Jiang Peng, Yao Kefu. Investigation on tribological properties of lubricating oil with carbon nanotubes additive[J]. Tribology,2005,25(5):394(in Chinese).
姜鹏, 姚可夫. 碳纳米管作为润滑油添加剂的摩擦磨损性能研究[J]. 摩擦学学报,2005,25(5):394.
45 Lei Ziheng. Preparation and tribological properties of rare earth treated carbon nanotubes self-assembled monolayers[D]. Shanghai: Shanghai Jiao Tong University,2013(in Chinese).
雷子恒. 稀土改性碳纳米管自组装膜的制备及其摩擦学性能研究[D]. 上海: 上海交通大学,2013.
46 Umeda J, Fugetsu B, Nishida E, et al. Friction behavior of network-structured CNT coating on pure titanium plate[J]. Appl Surf Sci,2015,357:721.
47 Sun Z, Cheng X. Investigation of carbon nanotube-containing film on silicon substrates and its tribological behavior[J]. Appl Surf Sci,2015,355:272.
48 Chen Wu, Duan Haitao, Gu Kali, et al. Tribological properties of MWCNTs reinforced UHMWPE composites[J]. Polym Mater Sci Eng,2015,31(8):62(in Chinese).
陈雾, 段海涛, 顾卡丽, 等. 多壁碳纳米管改性超高分子量聚乙烯的摩擦学性能[J]. 高分子材料科学与工程,2015,31(8):62.
49 Bastwros M M, Esawi A M, Wifi A. Friction and wear behavior of Al-CNT composites[J]. Wear,2013,307(1):164.
50 Pu Jibin, Wang Liping, Xue Qunji. Progress of tribology of graphene and graphene-based composite lubricating materials[J]. Tribology,2014,34(1):93(in Chinese).
蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报,2014,34(1):93.
51 Jia Yuan, Yan Hongxia, Gong Chao, et al. The surface modification of graphene and its application in the friction field[J]. Mater Rev:Rev,2013,27(5):18(in Chinese).
贾园, 颜红侠, 公超, 等. 石墨烯的表面改性及其在摩擦领域中的应用[J]. 材料导报:综述篇, 2013,27(5):18.
52 Senatore A, D′Agostino V, Petrone V, et al. Graphene oxide nanosheets as effective friction modifier for oil lubricant: Materials, methods, and tribological results[J]. ISRN Tribol,2013,2013(1):1395.
53 Lin J, Wang L, Chen G. Modification of graphene platelets and their tribological properties as a lubricant additive[J]. Tribol Lett,2011,41(1):209.
54 Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Graphene-based engine oil nanofluids for tribological applications[J]. ACS Appl Mater Interfaces,2011,3(11):4221.
55 Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces[J]. Carbon,2013,54:454.
56 Won M S, Penkov O V, Kim D E. Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding[J]. Carbon,2013,54:472.
57 Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown graphene:The thinnest solid lubricant[J]. ACS Nano,2011,5(6):5107.
58 Ghazaly A, Seif B, Salem H. Mechanical and tribological properties of AA2124-graphene self lubricanting nanocomposite[J]. Light Met,2013,2013:411.
59 Kandanur S S, Rafiee M A, Yavari F, et al. Suppression of wear in graphene polymer composites[J]. Carbon,2012,50(9):3178.
60 Wang Yonghong. Application of nano-diamond in lubrication technology[C]// Gansu Chemical Society Twenty-fifth Annual Meeting, the Seventh Gansu Exchange of Experience Teaching High School Chemistry Proceedings. Lanzhou,2007:225(in Chinese).
王永红. 纳米金刚石在润滑技术中的应用[C]// 甘肃省化学会第二十五届年会、第七届甘肃省中学化学教学经验交流会论文集. 兰州,2007:225.
61 Zhang Dong, Hu Xiaogang, Tong Yi, et al. The research development of nanodiamond as a lubricating additive[J]. Lubric Oil,2006,21(1):50(in Chinese).
张栋, 胡晓刚, 仝毅, 等. 纳米金刚石用做润滑添加剂的研究进展[J]. 润滑油,2006,21(1):50.
62 Chou C C, Lee S H. Rheological behavior and tribological performance of a nanodiamond-dispersed lubricant[J]. J Mater Process Technol,2008,201(1):542.
63 Chu H Y, Hsu W C, Lin J F. The anti-scuffing performance of diamond nano-particles as an oil additive[J]. Wear,2010,268(7):960.
64 Red′Kin V. Lubricants with ultradisperse diamond-graphite powder[J]. Chem Technol Fuels Oils,2004,40(3):164.
65 Shen Bin, Sun Fanghong, Zhang Zhiming, et al. Fabrication and application of CVD diamond coated cutting tools[J]. Diamond Abras Eng,2011(1):1(in Chinese).
沈彬, 孙方宏, 张志明, 等. CVD 金刚石薄膜涂层整体式刀具的制备与应用[J]. 金刚石与磨料磨具工程,2011(1):1.
66 Zhang Tingfei, Gou Li, Chen Hongyun. Mechanical properties and morphology of nano crystalline diamond film son tungsten carbide spheres[J]. J Synth Cryst,2013,42(6):5(in Chinese).
张廷飞, 芶立, 陈虹运. 硬质合金球上纳米金刚石膜的形貌与力学性能[J]. 人工晶体学报,2013,42(6):5.
67 Hollman P, Björkman H, Alahelisten A, et al. Diamond coatings applied to mechanical face seals[J]. Surf Coat Technol,1998,105(1):169.
68 Qiao Zhijun, Bo Zhenchen, Wang Ning, et al. Tribological properties of PTFE-based composites filled with nanodiamond and PEEK[J]. J Funct Mater,2010,41(10):1838(in Chinese).
乔志军, 薄振辰, 王宁, 等. 纳米金刚石与聚醚醚酮填充改性聚四氟乙烯复合材料的摩擦学性能[J]. 功能材料,2010,41(10):1838.
69 Liu Yunfeng, Zhu Yongwei, Liu Tingting, et al. Friction and wear properties of Ni-P electroless composite coatings with core-shell nanodiamond[J]. Tribology,2013,33(3):267(in Chinese).
刘蕴锋, 朱永伟, 刘婷婷, 等. Ni-P-纳米金刚石黑粉化学复合镀层的摩擦磨损性能[J]. 摩擦学学报,2013,33(3):267.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[7] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[8] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[9] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[10] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[11] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[12] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[13] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[14] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[15] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed