Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4174-4180    https://doi.org/10.11896/cldb.18120140
  高分子与聚合物基复合材料 |
基于碳纳米管界面改性的碳纤维复合材料抗γ辐射性能研究
闫民杰, 刘梁森, 陈莉, 刘丽研, 荆妙蕾, 徐志伟, 姜亚明, 傅宏俊
天津工业大学纺织学院先进纺织复合材料教育部重点实验室,天津 300387
Anti-gamma Radiation Properties of Carbon Fiber Composites Modified by Carbon Nanotubes in Interface
YAN Minjie, LIU Liangsen, CHEN Li, LIU Liyan, JING Miaolei, XU Zhiwei, JIANG Yaming, FU Hongjun
Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 3019KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究碳纳米管(CNTs)界面改性对碳纤维/环氧复合材料(CF/EP)抗辐照性能的影响,采用电泳沉积法将CNTs引入到CF/EP界面区域(CF-CNTs/EP)中,然后分别对CF/EP和CF-CNTs/EP进行γ射线辐照处理(γ-CF/EP和γ-CF-CNTs/EP),并对复合材料的力学性能、热学性能、耐疲劳性能和官能团变化等特性进行分析。结果表明:由于CNTs的存在,γ-CF-CNTs/EP的储能模量、玻璃化转变温度、弯曲强度和弯曲模量分别比γ-CF/EP高7.8 GPa、4.53 ℃、280 MPa和19.2 GPa;γ-CF-CNTs/EP的耐疲劳性能优于γ-CF/EP;XPS测试发现γ-CF-CNTs/EP内部C-C键的含量急剧减少10.88%,C-N键和C-O键的含量分别增加5.97%和4.44%,而γ-CF/EP无明显变化。结合断面形貌分析和裂纹扩展模型,讨论了CNTs增强复合材料抗γ射线辐射的微观结构和增强机制。以上结果证实,CNTs界面区域改性可以有效提升CF/EP的抗辐射性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫民杰
刘梁森
陈莉
刘丽研
荆妙蕾
徐志伟
姜亚明
傅宏俊
关键词:  复合材料  抗辐射  碳纳米管  界面改性  碳纤维    
Abstract: In order to study the effect of carbon nanotubes (CNTs) on the anti-irradiation properties of carbon fiber/epoxy composites (CF/EP), CNTs were introduced into the CF/EP interface region (CF-CNTs/EP) by electrophoretic deposition. The composites were then subjected to γ ray irradiation (γ-CF/EP and γ-CF-CNTs/EP), and their properties such as mechanics, heat, fatigue resistance and functional group changes were analyzed. The results showed that the storage modulus, glass transition temperature, flexural strength and flexural modulus of γ-CF-CNTs/EP were higher than those of γ-CF/EP by 7.8 GPa, 4.53 ℃, 280 MPa and 19.2 GPa, respectively. The fatigue resistance of γ-CF-CNTs/EP was better than that of γ-CF/EP. The XPS test revealed no significant change in γ-CF/EP, while the internal C-C bond content of γ-CF-CNTs/EP decreased sharply by 10.88%, and C-N and C-O increased by 5.97% and 4.44%, respectively. Combined with scanning electron microscopy and crack propagation models, the microstructure and enhancement mechanisms of CNTs-reinforced composites for anti-gamma radiation are discussed. The above results confirm that the addition of CNTs into the interface region of CF/EP can effectively improve its radiation resistance.
Key words:  composite    radiation resistance    carbon nanotubes    interface modification    carbon fibers
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11575126;U1533123);天津市自然科学基金(16JCYBJC17700)
作者简介:  闫民杰,天津工业大学在读硕士研究生,研究方向为碳纳米管改性碳纤维复合材料的抗辐射性能;徐志伟,男,1978年12月生,教授。主要从事碳基复合材料的结构设计研究,先后参加完成了863计划课题、国家自然科学基金重点项目和国防预研等多项科研项目,承担国家自然科学基金3项,已主持完成省部级项目4项,主持完成横向课题5项;在国内外重要学术期刊已发表SCI收录论文100多篇,论文已被引用超过2 200余次,h因子26;获得授权国家发明专利12项;获得省部级科技进步奖4项。
引用本文:    
闫民杰, 刘梁森, 陈莉, 刘丽研, 荆妙蕾, 徐志伟, 姜亚明, 傅宏俊. 基于碳纳米管界面改性的碳纤维复合材料抗γ辐射性能研究[J]. 材料导报, 2019, 33(24): 4174-4180.
YAN Minjie, LIU Liangsen, CHEN Li, LIU Liyan, JING Miaolei, XU Zhiwei, JIANG Yaming, FU Hongjun. Anti-gamma Radiation Properties of Carbon Fiber Composites Modified by Carbon Nanotubes in Interface. Materials Reports, 2019, 33(24): 4174-4180.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120140  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4174
1 Anwar A, Elfiky D, Ramadan A M, et al. Radiation Physics and Che-mistry, 2017, 134,14.2 Diao F, Zhang Y, Liu Y, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 383,227.3 Elnaggar M Y, Fathy E S, Hassan M M. Polymer Science, Series B, 2017, 59(4),472.4 Noura H, Amar B, Hocine D, et al. Journal of Thermoplastic Composite Materials, 2018, 31(5), 598.5 Sui X, Shi J, Yao H, et al. Composites Part A: Applied Science and Manufacturing, 2017, 92,134.6 Zhao Z, Teng K, Li N, et al. Composite Structures, 2017, 159,761.7 Djouani F, Zahra Y, Fayolle B, et al. Radiation Physics and Chemistry, 2013, 82,54.8 Koyanagi T, Nozawa T, Katoh Y, et al. Journal of the European Ceramic Society, 2018, 38(4), 1087.9 Liu L, Wu F, Yao H, et al. Applied Surface Science, 2015, 337,241.10 Zhao W, Lu Y, Zhou L, et al. Journal of Materials Science, 2016, 51(15),7073.11 Xu Z, Liu L, Huang Y, et al. Materials Letters, 2009, 63(21),1814.12 Yao H, Sui X, Zhao Z, et al. Applied Surface Science, 2015, 347,583.13 Raslan H A, Fathy E S, Mohamed R M. International Journal of Polymer Analysis and Characterization, 2018, 23(2),181.14 Szebenyi G, Farago D, Lamfalusi C, et al. Radiation Physics and Che-mistry, 2018, 145,111.15 Zegaoui A, Derradji M, Medjahed A, et al. Journal of Polymer Research, 2018, 25(12),250.16 Liu L, Jia C, He J, et al. Composites Science & Technology, 2015, 121(1),56.17 Silambarasan D, Surya V J, Iyakutti K, et al. Applied Surface Science, 2017, 418,49.18 Ichida M, Nagao K, Ikemoto Y, et al. Solid State Communications, 2017, 250,119.19 Zhang C, Xu H, Jiang Z, et al. Polymer Composites, 2012, 33(6),927.20 Bibi S, Yasin T, Nawaz M, et al. Materials Chemistry and Physics, 2018, 207,23.21 Zhang Y, Park S J. Journal of Polymer Science Part B Polymer Physics, 2017, 55(24),1890.22 Chen L, Jin H, Xu Z, et al. Journal of Materials Science, 2014, 50(1),112.23 Shan M, Wang H, Xu Z, et al. Analytical Methods, 2018, 10(5),496.24 Duong N T, Duclos J, Bizet L, et al. Physics Procedia, 2015, 70,554.25 Habib F, Martinez M, Artemev A, et al. Composites Part B: Enginee-ring, 2013, 47,26.26 Xu Z, Huang Y, Song Y, et al. Journal of Rare Earths, 2007, 25(4),462.27 Xu Z, Min C, Chen L, et al. Journal of Applied Physics, 2011, 109(5),054303.28 Hassan M M, Elhangali A, Mahoud G A, et al. Journal of Applied Polymer Science, 2005, 96(5), 1741.29 Fawzy Y H A, Ali A E-H, El-maghraby G F, et al. World Journal of Condensed Matter Physics, 2011, 1(1),12.30 Rytlewski P, Stepczynska M, Gohs U, et al. Industrial Crops and Pro-ducts, 2018, 112,716.31 Zegaoui A, Wang A R, Qadeer D A, et al. Radiation Physics and Che-mistry, 2017, 141,110.32 Zhu T, Teng K, Shi J, et al. Composites Science and Technology, 2016, 123,276.33 Li R, Gu Y, Yang Z, et al. Journal of Nuclear Materials, 2015, 466,100.34 Mukhopadhyay S, Nixon-pearson O J, Hallett S R. International Journal of Fatigue, 2018, 107,1.35 Shull P J, Jiang X, Wu H F, et al. Proceedings of SPIE-the Internatio-nal Society for Optical Engineering,2008, 6934,69340D.36 Wu Z X, Li J W, Huang C J, et al. Journal of Nuclear Materials, 2013, 441(1-3),67.
[1] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[2] 薛耀辉, 蒋军彪, 张辉, 文昌秀, 苏宗锋, 崔晓霞, 郭海涛. 低膨胀β-锂霞石基复合材料的研究现状与进展[J]. 材料导报, 2020, 34(5): 5068-5077.
[3] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[4] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[5] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[6] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[7] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[8] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[9] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[10] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[11] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[12] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[13] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[14] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[15] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed