Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4031-4034    https://doi.org/10.11896/cldb.18120138
  无机非金属及其复合材料 |
均匀电子束辐照诱导多壁碳纳米管非晶化
董小花1,2, 程亮1,2, 陈春彩3, 朱贤方1,2
1 厦门大学物理系,中国-澳大利亚联合功能纳米材料实验室,厦门 361005
2 厦门大学九江研究院,厦门 361005
3 闽南理工学院,土木工程学院大学物理教研室,石狮 362700
Uniform Electron Beam Irradiation Induced Amorphization of Multi-walled Carbon Nanotubes
DONG Xiaohua1,2, CHENG Liang1,2, CHEN Chuncai3, ZHU Xianfang1,2
1 China-Australia Joint Laboratory for Functional Nanomaterials, Department of Physics, Xiamen University, Xiamen 361005
2 Jiujiang Research Institute, Xiamen University, Xiamen 361005
3 Department of University Physics, College of Civil Engineering, Minnan University of Science and Technology, Shishi 362700
下载:  全 文 ( PDF ) ( 2405KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 室温下利用已经发展成熟的透射电镜原位观察技术,在均匀电子束辐照下对多壁碳纳米管(MWCNT)的非晶化过程进行研究。实验结果表明,在均匀电子束辐照下MWCNT内、外壁完整的石墨结构开始出现断裂或塌陷,即内层和外层优先开始非晶化,但是内层非晶化的速度明显更快。随着辐照时间的延长,非晶化逐渐由内、外表面向中间推进。同时,内壁断裂或塌陷形成的无定形碳开始向管的内部中空部分填充,而外壁非晶化的碳原子部分被融蒸到真空中。最终,无定形碳填满整个管的内部空间,导致MWCNT完全非晶化。另外,在整个过程中由于非晶化体积膨胀补偿,MWCNT的外径基本保持不变。利用在碳纳米管纳米曲率效应和能量束诱导非热激活效应基础上新发展的碳原子“融蒸”机制,对上述MWCNT的非晶化过程进行了全新、合理的解释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董小花
程亮
陈春彩
朱贤方
关键词:  多壁碳纳米管  电子束辐照  非晶化  纳米曲率效应  非热激活效应    
Abstract: Uniform electron beam irradiation induced amorphization of multi-walled carbon nanotubes (MWCNT) was in-situ investigated by transmission electron microscopy at room temperature. It was observed that the graphite structure of the inner and outer layers of MWCNT began to break or collapse under the uniform electron beam irradiation, namely, the amorphization of the inner and outer layers of MWCNT carried out preferentially, and the inner layer held an obviously faster amorphization rate than the outer layer. Specially, the amorphization gradually advanced from the inner and outer layers to the middle layers as the prolonging of irradiation time. Meanwhile, the inner hollow of the tube was gradually filled by the broken or collapsed carbon atoms of inner layer, while the broken or collapsed carbon atoms of outer layer were partially evaporated into the space. Eventually, the inner hollow of the tube was fully filled by the amorphous carbon fragment, resulting in complete amorphization of the MWCNT. In addition, the outer diameter of the MWCNT was found to be almost unchanged throughout the process, which might be attributed to the compensation of volume expansion of the amorphization. The newly developed “evaporation” mechanism of carbon atoms derived on the basis of nano-curvature effect of carbon nanotube and the energetic beam-induced non-thermal activation effect was employed to give a novel and reasonable explanation of above mentioned amorphization of MWCNT.
Key words:  multi-walled carbon nanotubes    electron beam irradiation    amorphization    nano-curvature effect    non-thermal activation effect
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TB383  
  S152. 4+7  
基金资助: 国家自然科学基金(11574255);福建省科技厅科技计划(合作)重点项目(2014I0016);国家重点基础科学研究计划(973计划)(2007CB936603)
作者简介:  董小花,现在厦门大学物理系和中国-澳大利亚联合功能纳米材料实验室攻读理学硕士,主要从事低维纳米材料稳定性研究;朱贤方,澳大利亚国立大学博士学位, 厦门大学特聘外籍专家,澳大利亚昆士兰大学兼职教授,博士研究生导师,中国-澳大利亚功能纳米材料联合实验室主任,主要从事纳米材料设计、制备、改性及纳米结构稳定性等方面的研究。朱贤方教授共发表100余篇论文,相关技术已申请发明专利10项(授权8项)。
引用本文:    
董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
DONG Xiaohua, CHENG Liang, CHEN Chuncai, ZHU Xianfang. Uniform Electron Beam Irradiation Induced Amorphization of Multi-walled Carbon Nanotubes. Materials Reports, 2019, 33(24): 4031-4034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120138  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4031
1 Banhart F. Reports on Progress in Physics, 1999, 62(8), 1181.2 Krasheninnikov A V, Banhart F. Nature Material, 2007, 6,723.3 Urita K, Suenaga K, Sugai T, et al. Physical Review Letters, 2005, 94, 155502.4 Banhart F. Jounal of Materials Scienc, 2006, 41, 4505.5 Banhart F. Mathematical Physical and Engineering Sciences, 2004, 362, 2205.6 Xu Z W, Min C Y, Chen L, et al. Materials Science and Technology, 2011, 27(4), 747.7 Ishaq A, Yan L, Gong J L, et al. Materials Letters, 2009, 63, 1505.8 Banhart F, Li J X, Krasheninnikov A V. Physical Review B, 2005,7l, 241408.9 Ajayan P M, Ravikumar V, Charlier J C. Physical Review Letters, 1998, 81(7), 1437.10 Ni Z C, Li Q T, Gong J L, et al. Nuclear Instruments and Methods in Physics Research B, 2007, 260, 542.11 Enik? G, àngel P P, Jaume R, et al. Journal of Nanoparticle Research, 2013, 15, 1852.12 Zhu X F, Li L X, Huang S L, et al. Carbon, 2011, 49, 3120.13 Zhu X F, Meng T, Li L X, et al. In: Proc. 1st IEEE-International Conference on Nano/Micro Engineered and Molecular Systems. Zhuhai, 2006,pp.463.14 Zhu X F. Journal of Physics Condensed Matter, 2003, 15, L253.15 Zhu X F. International Journal of Nanotechnology, 2006, 3, 492.16 Zhu X F, Wang Z G. Chinese Physics Letters, 2005, 22, 737.17 Zhu X F, Gong H M, Yang L, et al. Applied Physice Letters, 2014, 105, 093103.18 Li L X, Su J B, Zhu X F. Applied Physics A, 2017, 123, 337.19 Zhu X F, Wang Z G. In:International Conference on Semiconducting & Insulating Materials. Beijing, 2004, pp.247.20 M?lhave K, Gudnason S B, Pedersen A T, et al. Ultramicroscopy, 2007, 108, 52.21 Zobelli A, Gloter A, Ewels C P, et al. Physical Review B, 2008, 77, 045410.22 B?rrnert F, Gorantla S, Bachmatiuk A, et al. Physical Review B, 2010, 81, 20140.
[1] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[2] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[3] 李宏英, 傅佳佳, 王鸿博, 陈太球, 蒋春燕. 利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J]. 《材料导报》期刊社, 2018, 32(4): 626-630.
[4] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[5] 席文,陈铮,胡石. 形变诱发纳米晶局域固态非晶化的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 116-121.
[6] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[7] 柳和生, 段翔宇, 赖家美, 黄兴元, 陈乐乐. 超声振荡对多壁碳纳米管/VARTM用环氧树脂复合材料导电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(3): 112-115.
[8] 王燕锋,赵晓华,李庚英. 干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响[J]. 《材料导报》期刊社, 2017, 31(24): 20-25.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed