Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 626-630    https://doi.org/10.11896/j.issn.1005-023X.2018.04.024
  材料研究 |
利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果
李宏英1, 2, 傅佳佳1, 2, 王鸿博1, 2, 陈太球3, 蒋春燕3
1 江南大学江苏省功能纺织品工程技术研究中心,无锡 214122;
2 江南大学生态纺织教育部重点实验室,无锡214122;
3 圣华盾防护科技股份有限公司,无锡 214122
Enhancing the Hydrophilic Modification Effect of Electron Beam (EB) Irradiation upon PET Fabrics by Introducing Plasma Pretreatment
LI Hongying1, 2, FU Jiajia1, 2, WANG Hongbo1, 2, CHEN Taiqiu3, JIANG Chunyan3
1 Jiangsu Engineering Technology Research Center of Functional Textiles,Jiangnan University,Wuxi 214122;
2 Education Ministry Key Laboratory of Science & Technology for Eco-textiles,Jiangnan University,Wuxi 214122;
3 Shenghuadun Protection Technology Co. Ltd.,Wuxi 214122
下载:  全 文 ( PDF ) ( 1599KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用电子束辐照接枝亲水性单体可提高涤纶织物的亲水性,但涤纶大分子本身结构规整且结晶度较高,造成改性时接枝率偏低,引入预处理可以提高改性效果。先通过正交试验得到等离子体预处理的最佳方案,再分别对涤纶织物原样、无预处理接枝改性和经等离子体预处理后接枝改性的涤纶织物进行接枝率、回潮率、接触角、红外光谱(FT-IR)及扫描电子显微镜(SEM)的测试,结果表明,相比无预处理直接进行接枝改性的涤纶织物,增加等离子体预处理可以使接枝率提高1.64倍,回潮率增加75%,接触角也由87.95°急剧减小以至于无法测出具体数值,亲水性有了更为明显的改善。此外,断裂强力和白度测试结果也表明,辐照接枝前引入等离子体预处理对涤纶织物的物理性能影响较小,均在可接受范围内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李宏英
傅佳佳
王鸿博
陈太球
蒋春燕
关键词:  涤纶织物  等离子体预处理  电子束辐照  亲水性    
Abstract: The polyester (PET) fabrics' hydrophilicity can be improved by electron beam (EB) irradiation initiated grafting hydrophilic monomers. But the high regularity and crystallinity of the PET macromolecule structure results in the inferiority in the modification effect and grafting ratio compared to other common synthetic fibers. In this paper, the introduction of plasma pretreatment prior to EB irradiation has been proved to be able to greatly promote the effect of EB irradiation grafting modification according to the tests on the grafting ratio, moisture regain, contact angle, infrared spectrometer, and scanning electron microscopy (SEM) of the PET fabrics without any treatment, the EB irradiated PET fabrics without pretreatment and the EB irradiated PET fabrics with plasma pretreatment respectively. The results showed that the grafting ratio increased by 1.64 times, the moisture regain increased by 75%, and the contact angle decreased quickly from 87.95°to an unmeasurable small value, indicating the further improved hydrophilicity compared with the modified PET fabrics without plasma pretreatment. In addition, the influences of strength loss and the decrease of whiteness due to the plasma pretreatment on PET fabrics are almost negligible.
Key words:  polyester fabrics    plasma preliminary treatment    electron beam irradiation    hydrophilicity
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TS195.5  
基金资助: 国家重点研发计划 高品质热湿舒适性纺织品制备关键技术 National Key R&D Program of China (2017YFB0309100); 江苏省产学研前瞻性研究项目(BY2016022-23); 中央高校基本科研业务费专项资金(JUSRP51622A); 江苏省先进纺织工程技术中心立项课题(XJFZ/2015/1); 国家自然科学基金(31470509)
通讯作者:  王鸿博:1963年生,教授,研究方向为功能纺织材料 E-mail:wxwanghb@163.com   
作者简介:  李宏英:女,1994年生,硕士研究生,研究方向为功能纺织材料 E-mail:741076786@qq.com
引用本文:    
李宏英, 傅佳佳, 王鸿博, 陈太球, 蒋春燕. 利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J]. 《材料导报》期刊社, 2018, 32(4): 626-630.
LI Hongying, FU Jiajia, WANG Hongbo, CHEN Taiqiu, JIANG Chunyan. Enhancing the Hydrophilic Modification Effect of Electron Beam (EB) Irradiation upon PET Fabrics by Introducing Plasma Pretreatment. Materials Reports, 2018, 32(4): 626-630.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.024  或          https://www.mater-rep.com/CN/Y2018/V32/I4/626
1 Dai G L. The modification of polyester fiber and fabric using electron beam irradiation[D].Shanghai:Donghua University,2015(in Chinese).
代国亮.聚酯纤维及织物的电子束辐照改性[D].上海:东华大学,2015.
2 Dai G L, Xiao H, Shi M W. Research progress and development direction of surface hydrophilic modification of polyester fiber[J].Journal of Textile Research,2015,36(8):156(in Chinese).
代国亮,肖红,施楣梧.涤纶表面亲水改性研究进展及其发展方向[J].纺织学报,2015,36(8):156.
3 张海泉.纺织材料学[M].北京:中国纺织出版社,2013:78.
4 Zhang C L, Zhao G L, Song L D, et al. Research advance of polyester fiber surface modification[J].Polyester Industry,2007,20(6):5(in Chinese).
张翠玲,赵国樑,宋立丹,等.涤纶表面改性研究的进展[J].聚酯工业,2007,20(6):5.
5 Ou L. Research of irradiation treated polyester fabric for water and oil repellent finishing[D].Dalian:Dalian Polytechnic University,2010(in Chinese).
欧凌.辐照处理涤纶织物进行拒水拒油整理的研究[D].大连:大连工业大学,2010.
6 Dai J, Guo X L, Shen G D, et al. Effects of alkali deweighting and plasma finishing on polyester fabric[J].Knitting Industries,2015(5):52(in Chinese).
戴杰,郭晓玲,申国栋,等.碱减量和等离子体处理对涤纶织物的影响[J].针织工业,2015(5):52.
7 Liu Y J, Zhao X M. Application and development of low temperature plasma technology in dyeing and finishing[J].Textile Dyeing and Finishing Journal,2015,37(5):24(in Chinese).
刘元军,赵晓明.低温等离子体技术在染整中的应用及发展[J].染整技术,2015,37(5):24.
8 Tang X L, Ren Z F, Li C, et al. Surface modification of polyester fabrics using atmospheric plasma[J].Journal of Textile Research,2007,28(8):63(in Chinese).
唐晓亮,任忠夫,李驰,等.常压等离子体表面改性涤纶织物[J].纺织学报,2007,28(8):63.
9 Huang W, Jang J. Hydrophilic modification of PET fabric via continuous photografting of acrylic acid (AA) and hydroxyethyl methacrylate (HEMA)[J].Fibers & Polymers,2014,10(1):27.
10 Kumari M, Gupta B, Ikram S. Characterization of N-isopropyl acrylamide/acrylic acid grafted polypropylene nonwoven fabric deve-loped by radiation-induced graft polymerization[J].Radiation Physics & Chemistry,2012,81(11):1729.
11 Kim D K, Choi Y M, Jung C H, et al. Patterned grafting of acrylic acid onto polymer substrates[J].Special Issue:Research Article,2009,20(3):173.12 Fugaru V, Bubueanu G, Tuta C. Radiation induced grafting of acrylic acid onto extruded polystyrene surface[J].Radiation Physics and Chemistry,2012,81(9):1345.
13 El-Saftawy A A, Aal S,Ragheb M S, et al. Studying electron-beam-irradiated PET surface wetting and free energy[J].Nuclear Instruments and Methods in Physics Research B,2014,322(3):48.
14 Liu D. Modification of PET by atmospheric plasma[D].Shanghai:Donghua University,2007(in Chinese).
刘丹.常压等离子体处理涤纶[D].上海:东华大学,2007.
15 Chen Y, Chen S, Song F J. Ar plasma initiated grafting reaction for hydrophilicity of PET fabrics[J].Journal of Textile Research,2010,31(7):74(in Chinese).
陈英,陈森,宋富佳.等离子体接枝反应对涤纶织物亲水性能的影响[J].纺织学报,2010,31(7):74.
16 Zhang C M, Fang K J. Relationship between atmospheric plasma timeliness and polyester fabric wetting property[J].Cotton Textiles Technology,2012,40(4):215(in Chinese).
张春明,房宽峻.等离子体处理时效性与涤纶织物润湿性能关系[J].棉纺织技术,2012,40(4):215.
17 Chen S, Chen Y. Low temperature plasma initiated grafting modification on PET fabrics[J].Journal of Beijing Institute of Clothing Technology,2007,27(3):6(in Chinese).
陈森,陈英.低温等离子体引发的涤纶织物的接枝改性[J].北京服装学院学报,2007,27(3):6.
[1] 王力, 王海斗, 底月兰, 何东昱, 黄艳斐. 电子束辐照改善材料表面润湿性能的研究进展[J]. 材料导报, 2023, 37(23): 22080136-9.
[2] 张墅野, 初远帆, 李振锋, 鲍俊辉, 张雨杨, 刘一甫, 易庆鸿, 崔澜馨, 何鹏. “后摩尔时代”芯片互连方法简析[J]. 材料导报, 2023, 37(15): 22040268-10.
[3] 范晓光, 雷景胜, 顾诗雅, 冷旭, 刘畅, 杨磊. 利用NVP组分调控亲水增强型温敏性PNIPAAm共聚物[J]. 材料导报, 2023, 37(15): 21100186-7.
[4] 庄思杰, 龙柱, 张丹, 孙昌. 亲水性聚酯纤维对衬垫纸制备及其性能的影响[J]. 材料导报, 2022, 36(5): 20110181-6.
[5] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[6] 熊静, 李亚丹, 伍亮, 肖刚, 王鑫, 梁莉萍, 乔琰, 鲁志松, 余玲. 基于亲水性可控棉线有效分离苏丹I和罗丹明B[J]. 材料导报, 2021, 35(20): 20166-20175.
[7] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[8] 罗大军, 秦舒浩, 伍剑明, 李杨, 高进. 聚丙烯/乙烯-乙烯醇共聚物中空纤维及其硬弹性行为[J]. 材料导报, 2020, 34(Z2): 534-538.
[9] 李宏英, 王鸿博, 傅佳佳, 王文聪. 薄荷油微胶囊整理对涤纶织物服用性能的影响[J]. 材料导报, 2019, 33(z1): 510-514.
[10] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed