Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100186-7    https://doi.org/10.11896/cldb.21100186
  高分子与聚合物基复合材料 |
利用NVP组分调控亲水增强型温敏性PNIPAAm共聚物
范晓光1, 雷景胜1, 顾诗雅1, 冷旭1, 刘畅1, 杨磊2,*
1 沈阳农业大学工程学院,沈阳 110866
2 辽宁石油化工大学石油化工学院,辽宁 抚顺 113001
Regulation of Thermoresponsive PNIPAAm Copolymers with Enhanced Hydrophilicity via NVP Moieties
FAN Xiaoguang1, LEI Jingsheng1, GU Shiya1, LENG Xu1, LIU Chang1, YANG Lei2,*
1 College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
2 School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
下载:  全 文 ( PDF ) ( 24020KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚N-异丙基丙烯酰胺(PNIPAAm)是目前在生物医药领域研究和应用最为广泛的一种温敏性聚合物。但PNIPAAm均聚物的温敏性能相对单一,且由其构建的终产物难以在较宽温度范围内通过改变温度发生整体体积或表面润湿性能转变,因此限制了其应用范围。为了扩展PNIPAAm的应用领域,设计可以调控特别是提升PNIPAAm基材最低临界溶液温度(LCST)的温敏性聚合物十分必要。鉴于此,本研究将亲水性N-乙烯基吡咯烷酮(NVP)引入温敏性聚合物分子骨架,同时利用共聚物的反应基团将P(NIPAAm-co-NVP)共聚物聚合接枝于铂片表面从而形成共聚物膜。衰减全反射-傅里叶变换红外光谱(ATR-FTIR)、核磁共振氢谱(1H-NMR)和凝胶渗透色谱(GPC)的鉴定结果表明各单体间的共聚反应均按预定方案进行,且可显著提升NVP在聚合过程的参与率;动态光散射(DLS)和静态接触角数据、扫描电子显微镜(SEM)图像均证明可以利用NVP组分提升P(NIPAAm-co-NVP)共聚物的LCST,从而获得亲水增强型的温敏性共聚物膜,该膜可用于药物控制释放和非侵害性细胞收获等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范晓光
雷景胜
顾诗雅
冷旭
刘畅
杨磊
关键词:  聚N-异丙基丙烯酰胺(PNIPAAm)  N-乙烯基吡咯烷酮(NVP)  最低临界溶液温度(LCST)  自由基聚合法  亲水性    
Abstract: Poly(N-isopropylacrylamide) (PNIPAAm) is one of the most widely studied and applied thermoresponsive polymers in biomedical fields. However, the temperature sensitivity of PNIPAAm homopolymers is relatively narrow, and the final products constructed from PNIPAAm homopolymers are difficult to change the overall volume or surface wettability under a wide temperature range by changing temperature, so their applications are limited. To expand the applications of PNIPAAm, it is necessary to design the thermoresponsive polymers with the adjustable lower critical solution temperature (LCST), especially for the enhanced LCST. Hence, hydrophilic N-vinylpyrrolidone (NVP) monomers were introduced into the molecular chains of thermoresponsive polymers, and P(NIPAAm-co-NVP) copolymers were polymerized and grafted onto the surfaces of platinum plates via the reactive groups of the copolymers to form copolymer films in this study. The results of attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC) showed that the copolymerization of each kind of monomer was carried out in predetermined way, and the participation rate of NVP in the polymerization process was significantly increased. Dynamic light scattering (DLS) and static contact angle data, scanning electron microscope (SEM) images confirmed that the LCST of P(NIPAAm-co-NVP) copolymers had been enhanced by addition of NVP moieties, so as to obtain thermoresponsive copolymer films with enhanced hydrophilicity, which could be used for drug controlled release and non-invasive cell harvest.
Key words:  poly(N-isopropylacrylamide) (PNIPAAm)    N-vinyl pyrrolidone (NVP)    lower critical solution temperature (LCST)    free radical polymerization    hydrophilicity
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  O633  
基金资助: 国家自然科学基金青年基金(21604034);辽宁省教育厅项目-面上项目(LJKZ0693);辽宁省教育厅一般科研项目(L2020015)
通讯作者:  * 杨磊,辽宁石油化工大学石油化工学院副教授、硕士研究生导师。2005年大连理工大学化学工程与工艺专业本科毕业,2012年大连理工大学化学工程专业博士毕业(硕博连读)。目前主要从事智能生物材料及生物反应器等方面的研究工作。发表论文20余篇,出版书籍2部,授权中国发明专利1项及英国发明专利1项。yanglei@lnpu.edu.cn   
作者简介:  范晓光,沈阳农业大学工程学院副教授、硕士研究生导师。2005年大连理工大学化学工程与工艺专业本科毕业,2012年大连理工大学化学工程专业博士毕业(硕博连读)。目前主要从事智能生物材料及微尺度过程传递强化等方面的研究工作。发表论文10余篇,出版书籍2部,授权中国发明专利1项。
引用本文:    
范晓光, 雷景胜, 顾诗雅, 冷旭, 刘畅, 杨磊. 利用NVP组分调控亲水增强型温敏性PNIPAAm共聚物[J]. 材料导报, 2023, 37(15): 21100186-7.
FAN Xiaoguang, LEI Jingsheng, GU Shiya, LENG Xu, LIU Chang, YANG Lei. Regulation of Thermoresponsive PNIPAAm Copolymers with Enhanced Hydrophilicity via NVP Moieties. Materials Reports, 2023, 37(15): 21100186-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100186  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100186
1 Liu D, Liu W, Ye Z, et al. Materials Reports, 2019, 33(19), 3336 (in Chinese).
刘德乡, 刘武, 叶志会, 等. 材料导报, 2019, 33(19), 3336.
2 Zhou Y, Zheng Y, Wei T, et al. ACS Applied Materials and Interfaces, 2020, 12(5), 5447.
3 Barsbay M, Güven O. European Polymer Journal, 2021, 147, 110330.
4 Ishifune M, Suzuki R, Yamane M, et al. Journal of Macromolecular Science Part A, 2008, 45(7), 523.
5 Liu J, Zhang F, Shao J, et al. Acta Polymerica Sinica, 2009(12), 1266 (in Chinese).
刘今强, 张芳, 邵建中, 等. 高分子学报, 2009(12), 1266.
6 Geever L M, Devine D M, Nugent M J D, et al. European Polymer Journal, 2006, 42(1), 69.
7 Akiyama Y, Kikuchi A, Yamato M, et al. Acta Biomaterialia, 2014, 10(8), 3398.
8 Liu D, Wang T, Liu X, et al. Biomedical Materials, 2012, 7(5), 055008.
9 Gant R M, Abraham A A, Hou Y, et al. Acta Biomaterialia, 2010, 6(8), 2903.
10 Abraham A A, Fei R, Coté G L, et al. ACS Applied Materials and Interfaces, 2013, 5(24), 12832.
11 Li G, Guo L, Chang X, et al. International Journal of Biological Macromolecules, 2012, 50(4), 899.
12 Pan C, Yu D, Long Q, et al. Journal of Central South University (Science and Technology), 2007, 38(5), 906 (in Chinese).
潘春跃, 于典, 隆清德, 等. 中南大学学报(自然科学版), 2007, 38(5), 906.
13 Nam I, Bae J W, Jee K S, et al. Macromolecular Research, 2002, 10(2), 115.
14 Li X, Liu W, Ye G, et al. Biomaterials, 2005, 26(34), 7002.
15 Geever L M, Devine D M, Nugent M J D, et al. European Polymer Journal, 2006, 42, 2540.
16 Park K C, Idota N, Tsukahara T. Reactive and Functional Polymers, 2014, 79, 36.
17 Zhou S, Fan S, Au-Yeung S C F, et al. Polymer, 1995, 36(7), 1341.
18 Chen T. Preparation andproperties of organic-inorganic hybrid polymeric materials based on 3-(trimethoxysilyl)propyl methacrylate. Ph. D. Thesis, Zhejiang University, China, 2014 (in Chinese).
陈天有. 基于甲基丙烯酸-3-(三甲氧基硅基)丙酯的有机-无机杂化聚合物材料的制备与性能. 博士学位论文, 浙江大学, 2014.
19 Yang L, Pan F, Zhao X, et al. Langmuir, 2010, 26(22), 17304.
20 Fandrich N, Falkenhagen J, Weidner S M, et al. Macromolecular Che-mistry and Physics, 2010, 211, 869.
21 Yu H, Wang L, Chen T. European Polymer Journal, 2009, 45(3), 639.
22 Li J, Yang L, Fan X, et al. Polymers, 2018, 10, 293.
23 Ali A M I, Pareek P, Sewell L, et al. Soft Matter, 2007, 3(8), 1003.
24 Geever L M, Mínguez C M, Devine D M, et al. Journal of Materials Science, 2007, 42, 4136.
25 Yamada N, Okano T, Sakai H, et al. Macromolecular Rapid Communications, 1990, 11, 571.
26 Ebara M, Yamato M, Hirose M, et al. Biomacromolecules, 2003, 4(2), 344.
27 Barsbay M, Güven O. European Polymer Journal, 2021, 147, 110330.
[1] 庄思杰, 龙柱, 张丹, 孙昌. 亲水性聚酯纤维对衬垫纸制备及其性能的影响[J]. 材料导报, 2022, 36(5): 20110181-6.
[2] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[3] 熊静, 李亚丹, 伍亮, 肖刚, 王鑫, 梁莉萍, 乔琰, 鲁志松, 余玲. 基于亲水性可控棉线有效分离苏丹I和罗丹明B[J]. 材料导报, 2021, 35(20): 20166-20175.
[4] 罗大军, 秦舒浩, 伍剑明, 李杨, 高进. 聚丙烯/乙烯-乙烯醇共聚物中空纤维及其硬弹性行为[J]. 材料导报, 2020, 34(Z2): 534-538.
[5] 李宏英, 傅佳佳, 王鸿博, 陈太球, 蒋春燕. 利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J]. 《材料导报》期刊社, 2018, 32(4): 626-630.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed