A Brief Introduction of the ‘More than Moore Era' Chip Interconnection Method
ZHANG Shuye1,2,*, CHU Yuanfan1, LI Zhenfeng1, BAO Junhui1, ZHANG Yuyang1, LIU Yifu1, YI Qinghong1, CUI Lanxin1, HE Peng1,*
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150000, China 2 Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciences, Beijing 100000, China
Abstract: With the semiconductor process approaching its physical limit, the semiconductor industry has gradually entered the ‘More than Moore era'. Integrated technology is an important way to continue to improve the performance of electronic products. The key technologies to achieve high integration all require smaller size connections. With the decrease of connection size, the failure of devices at service temperature is beco-ming more and more serious due to the influence of the connection process on the package. Interconnection is an important way of chip heat conduction. Micro nano connection technology with high thermal conductivity and low process impact is expected to solve the reliability problem of high-power density devices. This paper summarizes the development of micro nano connection technology in new solders and energy transfer methods, briefly introduces the surface activation technology and discusses the possibility of its application in electronic packaging, and on this basis, briefly discusses the development direction of micro nano connection technology.
通讯作者:
* 张墅野,哈尔滨工业大学电子封装技术专业副教授、博士研究生导师。2012年哈尔滨工业大学电子封装技术专业本科毕业,2014年KAIST韩国先进科学技术院硕士毕业,2017年KAIST韩国先进科学技术院材料科学与工程专业博士毕业。2020年至今于哈尔滨工业大学电子封装技术专业任副教授。目前主要从事先进电子封装、光烧结柔性印刷电子技术、先进纳米材料与高端电子器件系统集成与封装方面的研究工作。发表SCI/EI文章61篇,包括Nano Energy、Progress in Natural Science-Materials International等。获2020年中国机械工业科学技术奖科技进步类特等奖、2019年中国机械工业科学技术科技进步三等奖、2020年中国产学研合作创新成果二等奖。syzhang@hit.edu.cn;何鹏,哈尔滨工业大学电子封装技术专业教授、博士研究生导师。1995年哈尔滨工业大学金属材料及工艺系本科毕业,1997年哈尔滨工业大学硕士毕业,2001年哈尔滨工业大学材料科学与工程学院博士毕业。2008至今任哈尔滨工业大学先进焊接与连接国家重点实验室教授、博士生导师。目前主要从事钎焊、微连接、连接界面行为与控制的基础理论与实际应用技术研究。主持和参加国家自然基金、国家973、863等课题20余项。获教育部自然科学奖一等奖1项,授权国家发明专利52项;已发表论文500余篇。nanojoin@hit.edu.cn
引用本文:
张墅野, 初远帆, 李振锋, 鲍俊辉, 张雨杨, 刘一甫, 易庆鸿, 崔澜馨, 何鹏. “后摩尔时代”芯片互连方法简析[J]. 材料导报, 2023, 37(15): 22040268-10.
ZHANG Shuye, CHU Yuanfan, LI Zhenfeng, BAO Junhui, ZHANG Yuyang, LIU Yifu, YI Qinghong, CUI Lanxin, HE Peng. A Brief Introduction of the ‘More than Moore Era' Chip Interconnection Method. Materials Reports, 2023, 37(15): 22040268-10.
1 Khan M I, Zhou Y, et al. Chinese Journal of Lasers, 2010, 36, 3149. 2 Li J H, Wang D, et al. IEEE Transactions on Industrial Informatics, 2015, 11(3), 612. 3 Kobayashi T, Ando T. Materials transactions, 2021, 62(8), 1270. 4 Su L, Yu X N, et al. IEEE Access, 2019, 7, 11515. 5 Liu X, Zheng Z, Wang C, et al. Journal of Materials Science:Materials in Electronics, 2017, 28(11), 8206. 6 Egerton R F, Li P, Malac M. Micron, 2004, 35(6), 399. 7 Zhang H. Design and Characterization of 1D Sn-based Nanosolders & Its Applications. Ph. D. Thesis, Lanzhou University, China, 2016 (in Chinese). 张宏. 纳米焊料的制备、微/纳表征及纳米焊接应用, 博士学位论文, 兰州大学, 2016. 8 Liu X, Liu W, Wang C, et al. Journal of Materials Science Materials in Electronics, 2016, 27(5), 4265. 9 Liu C, Liu A, Su Y, et al. Journal of Manufacturing Processes, 2022, 73, 139. 10 Cheng C, Xu X. Physical Review B: Condensed Matter and Materials Physics, 2005, 72, 16. 11 Ozono K, Obara M, Usui A, et al. Optics Communications, 2001, 189(1-3), 103. 12 Balling P, Schou J. Reports on Progress in Physics, 2013, 76(3), 036502. 13 Yang Y, Zhao Y, Wang L, et al. Journal of Materials Research and Technology, 2022, 17, 2577. 14 Chen H, Wang L, Han J, et al. Microelectronic Engineering, 2012, 96, 82. 15 Zhang P, Xue S, Wang J. Materials & Design. DOI:10. 1016/j. matdes. 2020. 108726. 16 Wang F, Huang Y, Du C. Materials Science & Engineering A, 2016, 668, 224. 17 He K, Chen Y P, Hu D A, et al. T Mater Heat Treat, 2020, 41(3), 163 (in Chinese). 何凯, 陈益平, 胡德安, 等. 材料热处理学报, 2020, 41(3), 163. 18 Wang F, Huang Y, Li D. In:2017 18th International Conference on Electronic Packaging Technology (ICEPT). Harbin, China, 2017, pp. 253. 19 Ma Y, Li X, Yang L, et al. Materials Science and Engineering:A, 2017, 696, 437. 20 Song B B, Yang L, Zhou S Y, et al. Welding, 2018(4), 27(in Chinese). 宋兵兵, 杨莉, 周仕远, 等. 焊接, 2018(4), 27. 21 Huang T, Gan G S, Liu C, et al. The Chinses Journal of Nonferrous Metals, 2022(1), 44 (in Chinese). 黄天, 甘贵生, 刘聪, 等. 中国有色金属学报, 2022(1), 44 . 22 Zou G S, Yan J F, Mu F W, et al. Transactions of the China Welding Institution, 2011, 32(4), 107 (in Chinese). 邹贵生. 闫剑锋, 母凤文, 等. 焊接学报, 2011, 32(4), 107. 23 Zeng L Y. Preparation of nanosilver paste and its low-temperature pressureless sintering. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese). 曾令玥. 纳米银膏的制备及其低温无压烧结成形. 硕士学位论文, 哈尔滨工业大学, 2018. 24 Tan Y S. Bonding process and elevated-temperature reliability of nano-silver paste. Ph. D. Thesis, Tianjin University, 2018 (in Chinese). 谭沿松. 纳米银焊膏烧结工艺和高温搭接可靠性研究, 博士学位论文, 天津大学, 2018. 25 Zhou Y Q. Preparation and performance study of low temperature sintered nano-silver paste. Master's Thesis, Wuhan Polytechnic University, 2020 (in Chinese). 周摇钱. 低温烧结纳米银浆的制备及性能研究, 硕士学位论文, 武汉轻工大学, 2020. 26 Fan J L. Controllable preparation and low temperature sintering of nano silver/copper and its interconnection application in microelectronic packaging. Master's Thesis, Chinese Academy of Sciences(Shenzhen Institute of Advanced Technology), 2020 (in Chinese) 范吉磊. 纳米银/铜的可控制备、低温烧结及其在微电子封装中的互连应用. 硕士学位论文, 中国科学院大学(中国科学院深圳先进技术研究院), 2020. 27 Yang H, Zhan Z. In:2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC). Singapore, Singapore, 2021, pp. 302. 28 Kamikoriyama Y, Imamura H, Muramatsu A, et al. Scientific reports, 2019, 9(1), 1. 29 Huang Y, Tian Y H, Jiang Z, et al. Journal of Mechanical Engineering, 2017, 53(4), 34(in Chinese). 黄圆, 田艳红, 江智, 等. 机械工程学报, 2017, 53(4), 34. 30 Zhong Y, An R, Wang C, et al. Small, 2015, 11(33), 4097. 31 Zhong Y, An R, Ma H, et al. Acta Materialia, 2019, 162, 163. 32 Ma H W. The preparation of nano Cu6Sn5solder paste and power die-attachebonding process. Master's Thesis, Harbin Institute of Technology, China, 2016 (in Chinese). 马慧文. 纳米 Cu6Sn5焊膏制备与功率芯片贴装键合工艺. 硕士学位论文, 哈尔滨工业大学, 2016. 33 Fumio S Ohuchi, Xiao Hu, Tadatomo Suga. Materials Research Society, 1994, 337, 727. 34 He R, Fujino M, Suga T, et al. In:2016 17th International Conference on Electronic Packaging Technology (ICEPT). Wuhan, China, 2016, pp. 884. 35 Mu F W, Suga T. In:2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). Kanazawa, Japan, 2019. pp. 87. 36 Michitaka Y, Takashi M, Yuichi K, et al. In:2019 International Confe-rence on Electronics Packaging (ICEP). Niigata, Japan, 2019, pp. 361. 37 Li C, Liu X, Li K, et al. In:2015 16th International Conference on Electronic Packaging Technology (ICEPT). Changsha, China, 2015, pp.1026. 38 Ilovitsh T. Hybrid silicon/lithium niobate modulators:design and wafer bonding. Master's Thesis, Bar-Ilan University, 2012. 39 Ulman A. Chemical Reviews, 1996, 96(4), 1533. 40 Schwartz D K. Annual Review of Physical Chemistryl, 2001, 52(1), 107. 41 Nuzzo R G, Whitesides G M. Chemical Reviews, 2005, 105, 1103. 42 Dubois L H, Nuzzo R G. Annual Review of Physical Chemistry, 1992, 43(1), 437. 43 Lykova M, Panchenko I, Geidel M, et al. In:2017 40th International Spring Seminar on Electronics Technology. Sofia, Bulgaria, 2017, pp.1. 44 Ghosh T, Dutta A, Singh S. Advanced Materials Research. 2013, 716, 223. 45 Lykova M, Panchenko I, Künzelmann U, et al. Soldering and Surface Mount Technology, 2018, 30(2), 106. 46 Killi K, Ghosh T, Sivaramakrishna C S V, et al. In:2015 IEEE 65th Electronic Components and Technology Conference (ECTC). San Diego, CA, USA, 2015, pp.2200. 47 Wang J, Wang Q, Wu Z, et al. Applied Surface Science, 2017, 403, 525. 48 Cl A, Ala B, Ys C, et al. Microelectronics Reliability, DOI:10. 1016/j. microrel. 2021. 114241. 49 Artel V, Bakish I, Kraus T, et al. In:IEEE. OFC/NFOEC. Los Angeles, CA, USA. 2012, pp. 1. 50 Fu W, Ma B, Kuwae H, et al. Japanese Journal of Applied Physics, 2018, 57(2), 02BB01.