Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 20-25    https://doi.org/10.11896/j.issn.1005-023X.2017.024.005
  第一届先进胶凝材料研究与应用学术会议 |
干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响
王燕锋,赵晓华,李庚英
汕头大学土木工程系,汕头 515063
Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar
WANG Yanfeng, ZHAO Xiaohua, LI Gengying
Department of Civil Engineering, Shantou University, Shantou 515063
下载:  全 文 ( PDF ) ( 721KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过四次烘干和三次吸湿试验,考察了湿度变化对多壁碳纳米管复合水泥砂浆(MWCNTs/CM)的电阻和压阻效应的影响,并与素水泥砂浆(CM)进行对比。结果表明:在试件湿度较大时,烘干和吸湿对MWCNTs/CM和CM电阻的影响较小,而当试件湿度较低时(第三次烘干及第一次吸湿后,湿度变化比低于1%时),电阻随着湿度的降低突然增加,并且湿度变化对CM电阻的影响程度显著高于MWCNTs/CM。同样,当试件湿度较大时,烘干和吸湿对MWCNTs/CM和CM压阻效应的影响较小,当试件湿度较低时(在第三次烘干后),CM和MWCNTs/CM的压阻效应显著增强,并且湿度变化对CM压阻效应的影响显著高于MWCNTs/CM。研究还表明,在湿度变化量大致相同时,吸湿过程中CM和MWCNTs/CM达到渗流阈值附近时压阻效应高于烘干过程。最后,初步探讨了MWCNTs/CM压阻效应随湿度变化的作用机理,给出了MWCNTs/CM压阻效应随湿度变化的等效电路模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王燕锋
赵晓华
李庚英
关键词:  多壁碳纳米管  砂浆  压阻效应  干湿变化  等效电路模型    
Abstract: The influence of water content variation on the resistance and piezoresistivity of multi-wall carbon nanotube reinforced mortar was investigated by means of four times drying and three times wetting experiments. The results were compared with the cement mortar. It showed small impact on resistance and piezoresistivity of specimen with more water content. With decreasing water content, the change of resistance became significant, especially for the cement mortar. The magnitude of the piezoresistivity of composites became large. The piezoresistivity of CM was more sensitive to the change of water than MWCNTs/CM in this case. Moreover, the magnitude of piezoresistivity near the percolation during the wetting process was higher than the drying process. Finally, the mechanisms of piezoresistivity change of MWCNTs/CM were analyzed during the process. The equivalent circuits were obtained to explain the change of conductive network.
Key words:  multi-walled carbon nanotubes    mortar    piezoresistivity    dry/wet state variation    equivalent circuit model
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TQ127.1  
基金资助: 广东省高等教育重点实验室基金(2013CXZDA017);国家自然科学基金(51378303)
作者简介:  王燕锋:男,1979年生,博士研究生,主要研究方向为水泥基复合材料及智能材料与结构 E-mail:13534910418@163.com
引用本文:    
王燕锋,赵晓华,李庚英. 干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响[J]. 《材料导报》期刊社, 2017, 31(24): 20-25.
WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar. Materials Reports, 2017, 31(24): 20-25.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.005  或          https://www.mater-rep.com/CN/Y2017/V31/I24/20
1 Wen S H, Chung D D L. Damage monitoring of cement paste by electrical resistance measurement[J]. Cem Concr Res, 2000,30:1979.
2 Wen S H, Chung D D L. Partial replacement of carbon fiber by carbon black inmultifunctional cement-matrix composites[J]. Carbon,2007,45(3):505.
3 Xiao H G, Li H, Ou J P. Modeling of piezoresistivity of carbon black filledcement-based composites under multi-axial strain[J].Sens Actuat A: Phys,2010,160:87.
4 Xiao H G, Li H, Ou J P. Strain sensing properties of cement-based sensors embedded at various stresszones in a bending concrete beam[J]. Sens Actuat A: Phys,2011,167:581.
5 Geng S N, Wang P, Ding T H. Properties of multi-walled carbon nanotube/silicone rubber composite pressure-sensitive elements[J]. J Tsinghua University,2012(8):1081(in Chinese).
耿胜男,王鹏,丁天怀. 多壁碳纳米管/硅橡胶复合材料压敏元件特性[J]. 清华大学学报,2012(8):1081.
6 Liu J H,Wu S Q, He C X,et al. Structure property and application of carbon nanotubes and carbon microtubes[J]. J Shenzhen University Science and Engineering,2013,30(1):1(in Chinese).
刘剑洪,吴双泉,何传新,等. 碳纳米管和碳微米管的结构、性质及其应用[J]. 深圳大学学报理工版,2013,30(1):1.
7 Yao W, Zuo J Q, Wu K R. Microstructure and thermoelectric properties of carbon nanotube-carbon fiber/cement composites[J]. J Funct Mater, 2013,44(13):1924(in Chinese).
姚武,左俊卿,吴科如. 碳纳米管-碳纤维/水泥基材料微观结构和热电性能[J].功能材料,2013,44(13):1924.
8 Liu Q L, Sun W, Ma Z X, et al. Effect of carbon nanotube on mechanical and 2D-3D microstructure properties of cement mortars with silica fume[J]. J Chin Ceram Soc, 2014,42(10):1266(in Chinese).
刘巧玲,孙伟,马正先,等.碳纳米管对硅灰/水泥砂浆力学和2D-3D微结构性能的影响[J].硅酸盐学报,2014,42(10):1266.
9 Li G Y, Wang P M, Zhao X H. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites[J]. Cem Concr Compos,2007,29:377.
10Han B, Yu X, Kwon E. A self-sensing carbon nanotube/cement composites for traffic monitoring[J]. Nanotechnology,2009,18:445.
11Han B, Yu X, Ou J P. Effect of water content on the piezoresistivity of MWNT/cement composites[J].J Mater Sci,2010,45:3714.
12Konsta-Gdoutos M S, Aza C A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures[J]. Cem Concr Compos,2014,53:162.
13Zhao X H, Li G B, Wang Y L, et al. Piezoresistivity of carbon fiber reinforced cement-matrix composites[J]. Acta Mater Compos Sin,2011,28(5):214(in Chinese).
赵晓华,李国宝,王玉林,等. 碳纤维增强水泥基复合材料的压阻效应[J].复合材料学报,2011,28(5):214.
14Li Gengying. Mechanical properties and smart properties of carbon nanotube cement based materials[D].Shanghai: Tongji University, 2007(in Chinese).
李庚英.碳纳米管水泥基材料的力学性能及机敏性能[D].上海:同济大学,2007.
15Xu S L, Liu J T, Li Q H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste[J]. Constr Building Mater, 2015,76:16.
16Rajabipour F, Weiss J. Electrical conductivity of drying cement paste[J].Mater Struct, 2007,40:1143.
17 Philippi P C, Souza H A. Modeling moisture distribution and isothermal transfer in a heterogeneous porous material[J].Int J Flow, 1995,21(4):667.
[1] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[2] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[3] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[4] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[5] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[6] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[7] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[8] 徐浩, 周双喜, 张浩东, 曾晓辉. 高速铁路板式无砟轨道水泥乳化沥青砂浆粘弹性的研究进展[J]. 材料导报, 2024, 38(20): 23060058-10.
[9] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[10] 李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
[11] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[12] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[13] 张吉哲, 郭晨晨, 胡学亮, 何亮, 吕鑫, 樊超, 姚占勇. 富油沥青砂浆再生设计与性能恢复规律研究[J]. 材料导报, 2023, 37(24): 22100098-7.
[14] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[15] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed