Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23120021-9    https://doi.org/10.11896/cldb.23120021
  新型高性能磷酸镁胶凝材料 |
玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究
李伟1,2, 谢剑1,3,*, 佟成龙4
1 天津大学建筑工程学院/天津大学滨海土木工程结构与安全教育部重点实验室,天津 300350
2 兰州交通大学土木工程学院,兰州 730070
3 北京市既有建筑改造工程技术研究中心(天津分中心),天津 300350
4 中建五局第三建设有限公司,天津 300300
Study of Flexural Strengthening and Toughening Effect of Basalt Minibar on Magnesium Phosphate Cement Repair Mortar
LI Wei1,2, XIE Jian1,3,*, TONG Chenglong4
1 School of Civil Engineering, Tianjin University/Key Laboratory of Coast Civil Structure Safety of the Ministry of Education, Tianjin University, Tianjin 300350, China
2 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
3 Beijing Engineering Research Center of Existing Building Renovation(Tianjin Branch), Tianjin 300350, China
4 The 3rd Construction Co., Ltd., of China Construction 5th Engineering Bureau, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 29749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究玄武岩微筋(Basalt minibar)对磷酸镁修补砂浆(MPCRM)的增强增韧改性效果,通过四点弯曲试验分析纤维类型、纤维掺量、基体水胶比及养护条件对MPCRM弯拉强度和弯曲韧性的影响规律。试验结果表明:玄武岩微筋对MPCRM的弯曲增强增韧性能优越,且其增韧效果优于玄武岩单丝纤维;当玄武岩微筋掺量不低于1.0%(体积分数)时,MPCRM弯拉强度和弯曲韧性均随着玄武岩微筋掺量增加而提高;随着水胶比提高,玄武岩微筋增强MPCRM的弯曲韧性降低,弯拉强度先增加后减小,水胶比为0.18和体积掺量为1.5%的玄武岩微筋增强MPCRM的弯拉强度最大;掺入玄武岩微筋能够部分弥补低温养护MPCRM的受冻损伤。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟
谢剑
佟成龙
关键词:  磷酸镁修补砂浆(MPCRM)  玄武岩微筋  拔出功  弯曲韧性  低温养护    
Abstract: In order to study the strengthening and toughening modification of basalt minibar on magnesium phosphate cement repair mortar (MPCRM), the effects of different test parameters (fiber type, fiber volume fraction, water-binder ratio and curing conditions) on flexural strength and toughness of MPCRM were analyzed by four-point bending test. The results show that the basalt minibar has excellent flexural strengthening and toughening properties for MPCRM, and its toughening effect is better than that of traditional basalt monofilament fiber. Under the condition that the volume fraction of basalt minibar is not less than 1.0%, the flexural strength and toughness of MPCRM increase with the increase of volume fraction of basalt minibar. The flexural toughness of basalt minibar reinforced MPCRM decreases with the increase of water-binder ratio, while its flexural strength increases first and then decreases. The bending performance of basalt minibar reinforced MPCRM with water-binder ratio of 0.18 and the volume fraction of 1.5% is the best. The low temperature curing conditions cause the deterioration of the bending performance of MPCRM, the incorporation of basalt minibar can partially compensate for the frost damage of MPCRM.
Key words:  magnesium phosphate cement repair mortar (MPCRM)    basalt minibar    pull-out energy    flexural toughness    low temperature curing
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  U444  
基金资助: 国家自然科学基金(52068043);甘肃省建设科技攻关项目(JKR2021-07);兰州市人才创新创业项目(2019-RC-78)
通讯作者:  *谢剑,天津大学建筑工程学院教授、博士研究生导师。1997年天津大学结构工程专业本科毕业,2000年天津大学结构工程专业硕士毕业后留校任教至今,2005年天津大学结构工程专业博士毕业。目前主要从事混凝土结构基本理论、低温环境下土木工程材料和结构性能及既有建筑加固改造新技术等方面的研究工作。已主持国家自然科学基金面上项目4项,出版学术专著3部,在国内外权威期刊上公开发表论文80余篇。xiejian@tju.edu.cn   
作者简介:  李伟,兰州交通大学土木工程学院讲师。2000年兰州铁道学院(现兰州交通大学)建筑工程专业本科毕业后留校任教至今,2005年兰州交通大学结构工程专业硕士毕业。现为天津大学建筑工程学院博士研究生,在谢剑教授的指导下进行研究。目前主要研究领域为加固复合材料的制备与应用。
引用本文:    
李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
LI Wei, XIE Jian, TONG Chenglong. Study of Flexural Strengthening and Toughening Effect of Basalt Minibar on Magnesium Phosphate Cement Repair Mortar. Materials Reports, 2024, 38(17): 23120021-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120021  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23120021
1 Lu C F. China Railway, 2017, 56(7), 1 (in Chinese).
卢春房. 中国铁路, 2017, 56(7), 1.
2 Liu D J, Zhong F, Huang H W, et al. China Journal of Highway and Transport, 2021, 34(11), 178 (in Chinese).
刘德军, 仲飞, 黄宏伟, 等. 中国公路学报, 2021, 34(11), 178.
3 Liu J, Guo R H, Zhang Z Q. Materials Reports, 2021, 35(23), 23068 (in Chinese).
刘进, 呙润华, 张增起. 材料导报, 2021, 35(23), 23068.
4 Li Y, Bai W L, Shi T F. Construction and Building Materials, 2017, 142, 459.
5 Meng X R, Jiang Y, Chen B, et al. Construction and Building Materials, 2023, 408, 133612.
6 Qin J H, Qian J S, Song Q, et al. Journal of the Chinese Ceramic Society, 2022, 50(6), 1592 (in Chinese).
秦继辉, 钱觉时, 宋庆, 等. 硅酸盐学报, 2022, 50(6), 1592.
7 Haque M A, Chen B, Ahmad M R, et al. Construction and Building Materials, 2020, 235, 117447.
8 Tang Z B, Chen D D, Wang X P, et al. Journal of Building Engineering, 2023, 68, 106123.
9 Yang Z H, Liu S J, Wu K, et al. Materials Reports, 2023, 37(1), 118 (in Chinese).
杨正宏, 刘思佳, 吴凯, 等. 材料导报, 2023, 37(1), 118.
10 Yang J M, Qian C X, Xun Y, et al. Journal of Building Materials, 2009, 12(5), 590 (in Chinese).
杨建明, 钱春香, 荀勇, 等. 建筑材料学报, 2009, 12(5), 590.
11 Jia X W, Si D K, Zhang X, et al. Materials Reports, 2016, 30(22), 138 (in Chinese).
贾兴文, 司端科, 张新, 等. 材料导报, 2016, 30(22), 138.
12 Feng H, Chen G, Gao D Y, et al. Advances in Civil Engineering, 2018, 24, 547.
13 Wang Q X. Study on alkali resistance of basalt fiber and effect of the fiber composites on mechanical properties of concrete. Ph. D. Thesis, Dalian University of Technology, China, 2021 (in Chinese).
王庆轩. 玄武岩纤维的耐碱性能及其复合材料对混凝土力学性能的影响. 博士学位论文, 大连理工大学, 2021.
14 Branston J, Das S, Kenno S Y, et al. Construction and Building Materials, 2016, 124, 878.
15 Jiang K D, Wang X, Chen Z Y, et al. Construction and Building Materials, 2022, 351, 128952.
16 Li M, Yue Y F, Qian J S, et al. Journal of Civil and Environmental Engineering, 2023, 45(2), 194(in Chinese).
李茂, 岳燕飞, 钱觉时, 等. 土木与环境工程学报(中英文), 2023, 45(2), 194.
17 Bhutta A, Farooq M, Zanotti C, et al. Materials and Structures, 2017, 50, 80.
18 Yoo D Y, Shin W, Banthia N, et al. Cement and Concrete Composites, 2021, 124, 104269.
19 China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete:CECS 13:2009, China Planning Press, China, 2010 (in Chinese).
中国工程建设标准化协会. 纤维混凝土试验方法标准:CECS 13:2009, 中国计划出版社, 2010.
20 ASTM. Standard test method for flexural toughness and first-crack strength of fiber reinforced concrete (using beam with third-point loading):ASTM C 1018-97, ASTM International, West Conshohocken, USA, 1997.
21 Qin J H, Qian J S, Li Z, et al. Construction and Building Materials, 2018, 188, 946.
22 ASTM. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading):ASTM C 1609/C 1609M-19, ASTM International, West Conshohocken, USA, 2019.
23 Ministry of Housing and Urban-Rural Development of the People's Republic China. Steel fiber reinforced concrete:JG/T 472-2015, China Standards Press, China, 2015 (in Chinese).
中华人民共和国住房和城乡建设部. 钢纤维混凝土:JG/T 472-2015. 中国标准出版社, 2015.
24 Gao D Y, Zhao L P, Feng H, et al. Journal of Building Materials, 2014, 17(5), 783 (in Chinese).
高丹盈, 赵亮平, 冯虎, 等. 建筑材料学报, 2014, 17(5), 783.
[1] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[2] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[3] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[4] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[5] 陈文华, 黄志义. 集料和纤维掺量对LTCC力学性能和微观结构的影响[J]. 材料导报, 2020, 34(18): 18049-18055.
[6] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[7] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed