Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080222-6    https://doi.org/10.11896/cldb.23080222
  特种工程材料 |
低温养护对环氧树脂基砂浆早期性能的影响及机理
吕炎, 白二雷*, 王志航, 夏伟
空军工程大学航空工程学院,西安 710038
Effect and Mechanism of Low Temperature Curing on the Early Performance of Epoxy Resin Based Mortar
LYU Yan, BAI Erlei*, WANG Zhihang, XIA Wei
Aviation Engineering School, Air Force Engineering University, Xi'an 710038, China
下载:  全 文 ( PDF ) ( 8859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环氧树脂基砂浆是一种快速修补材料,为研究低温养护条件对环氧树脂基砂浆工作性能及早期力学性能的影响,构建了全过程低温环境,分别进行了抗压强度、抗折强度、流动度、凝结时间以及内部温度测试,分析了环氧树脂基砂浆的微观结构。结果表明:环氧树脂基砂浆性能受养护温度影响较大,当养护温度为0 ℃时,流动度仅为112 mm,但随着温度升高流动度增长较快;低温养护使得砂浆内部热效应减弱,延缓了凝结时间;早期强度也损失显著,0 ℃时,砂浆养护1 d才形成强度,说明低温环境大大减慢了体系的固化速度。微观分析表明低温养护导致砂浆内部结构疏松,裂缝及孔隙增多,说明固化反应不完全,从而降低了砂浆的性能。当养护温度为20 ℃时,砂浆内部结构较为致密,宏观结构也表现出较高强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕炎
白二雷
王志航
夏伟
关键词:  环氧树脂基砂浆  快速修补材料  低温养护  早期力学性能  工作性能  微观结构    
Abstract: Epoxy resin based mortar is a new high-performance engineering material. In order to study the effect of low temperature curing conditions on the working performance and early mechanical properties of epoxy resin based mortar, a low-temperature environment was constructed using a low temperature test system. The compressive strength, flexural strength, flowability, setting time, and internal temperature were tested, and the microstructure and pore structure of epoxy resin based mortar were analyzed. The results show that the performance of epoxy resin based mortar is greatly affected by temperature. When the temperature is 0 ℃, the fluidity is only 112 mm, but it increases rapidly with increasing temperature. Low temperature curing weakens the internal thermal effect of mortar and delays the setting time. The early strength loss is also significant. At 0 ℃, the mortar is cured for 1 d to form strength, indicating that the low-temperature environment greatly delays the curing rate of the system. Microscopic analysis shows that low-temperature curing leads to loose internal structure, increases cracks and pores in the mortar, indicating incomplete curing reaction and thus reducing the performance of the mortar. When the curing temperature is 20 ℃, the internal structure is relatively dense and the macro structure also exhibits high strength.
Key words:  epoxy resin based mortar    rapid repair material    low temperature curing    early mechanical property    working performance    microstructure
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TV432+.8  
基金资助: 国家自然科学基金(52278287)
通讯作者:  *白二雷,空军工程大学航空工程学院副教授、博士研究生导师。主持完成国家自然科学基金项目2项,陕西省自然科学基金项目1项,陕西省科技攻关项目1项。获得国家专利8项,发表学术论文50余篇,其中SCI收录12篇,EI收录15篇,出版专著3部。 bwxkgy@163.com   
作者简介:  吕炎,2021年6月于空军工程大学获得工学学士学位。现为空军工程大学航空工程学院硕士研究生,主要从事工程抢修抢建材料研究。
引用本文:    
吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
LYU Yan, BAI Erlei, WANG Zhihang, XIA Wei. Effect and Mechanism of Low Temperature Curing on the Early Performance of Epoxy Resin Based Mortar. Materials Reports, 2024, 38(5): 23080222-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080222  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23080222
1 Zhang X H, Zhu H, Chen X L. New Building Materials, 2016, 43(5), 23 (in Chinese).
张晓华, 朱华, 陈晓龙. 新型建筑材料, 2016, 43(5), 23.
2 Peng J, Dan R, Huang S, et al. Thermosetting Resin, 2021, 36(3), 42 (in Chinese).
彭杰, 单韧, 黄松, 等. 热固性树脂, 2021, 36(3), 42.
3 Tan M. Thermosetting Resin, 2018, 33(1), 41 (in Chinese).
谭敏. 热固性树脂, 2018, 33(1), 41.
4 Haddad H, Akohaisi M. Materials & Design, 2013, 49, 850.
5 Chen W, Ren K L, Zhang Y L, et al. Journal of Water Resources and Water Engineering, 2023, 34(3), 129 (in Chinese).
陈卫, 任凯麟, 张御翎, 等. 水资源与水工程学报, 2023, 34(3), 129.
6 Rahman M M, Akhtarul I M. Polymer Bulletin, 2022, 79(3), 1949.
7 Li G J, Luo F. Non-metallic Mineral, 2019, 42(5), 35 (in Chinese).
李冠杰, 雒锋. 非金属矿, 2019, 42(5), 35.
8 Zhang J T, Min Q L, Li M C, et al. Journal of Water Resources and Water Engineering, 2022, 33(1), 152 (in Chinese).
张俊涛, 闵巧玲, 李明超, 等. 水资源与水工程学报, 2022, 33(1), 152.
9 Lakhiar M T, Bai Y, Wong L S, et al. Construction and Building Materials, 2022, 315, 125677.
10 Chen J B, Deng A Z, Chen K, et al. New Chemical Materials, 2016, 44 (4), 249 (in Chinese).
陈静波, 邓安仲, 陈科, 等. 化工新型材料, 2016, 44(4), 249.
11 Kong X M, Liu Y L, Yan P Y. Journal of the Chinese Ceramic Society, 2010, 38(4), 553 (in Chinese).
孔祥明, 刘永亮, 阎培渝. 硅酸盐学报, 2010, 38(4), 553.
12 Reis J M L, Carvalho A R, da Costa M H S. Construction and Building Materials, 2014, 55, 1.
13 Jin N J, Yeon J, Seung I. Construction and Building Materials, 2017, 156(15), 933.
14 Huang H, Hao J, Zhao B. Energy Procedia, 2017, 105, 1205.
15 Teng X H, Lin H, Zhang J Y, et al. Low Temperature Building Technology, 2022, 44(8), 42 (in Chinese).
滕新华, 林辉, 张菁燕, 等. 低温建筑技术, 2022, 44(8), 42.
16 Xiong X B. Experimental study on the evolution law of epoxy mortar concrete interface performance in cold regions. Master's Thesis, Xi'an University of Technology, China, 2022 (in Chinese).
熊小斌. 寒冷地区环氧砂浆-混凝土界面性能演化规律试验研究. 硕士学位论文, 西安理工大学, 2022.
17 DL/T 5193-2004 Technical code of epoxy resin mortar, China Electric Power Press, China, 2004 (in Chinese).
DL/T 5193-2004 环氧树脂砂浆技术规程, 中国电力出版社, 2004.
18 GB/T 17671-2021 Test method for strength of hydraulic cement mortar, Standards Press of China, China, 2021(in Chinese).
GB/T 17671-2021 水泥胶砂强度检验方法, 中国标准出版社, 2021.
19 GB/T 2419-2005 Test method for fluidity of cement mortar, Standards Press of China, China, 2005(in Chinese).
GB/T 2419-2005 水泥胶砂流动度测定方法, 中国标准出版社, 2005.
20 Roller M B. Polymer Engineering & Science, 1975, 15(6), 406.
21 Lyu Y, Bai E L, Wang Z H, et al. Journal of Air Force Engineering University, 2022, 23(6), 99 (in Chinese).
吕炎, 白二雷, 王志航, 等. 空军工程大学学报, 2022, 23(6), 99.
22 Hancox N L. Materials & Design, 1998, 19(3), 85.
[1] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[2] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[3] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[4] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[5] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[6] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[7] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[8] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[9] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[10] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[11] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[12] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[13] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[14] 陈强, 张而耕, 梁丹丹, 周琼, 黄彪, 韩生. nc-Ti(C,N)/a-C复合涂层的微观结构和性能[J]. 材料导报, 2023, 37(22): 22080131-7.
[15] 黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed