Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080222-6    https://doi.org/10.11896/cldb.23080222
  特种工程材料 |
低温养护对环氧树脂基砂浆早期性能的影响及机理
吕炎, 白二雷*, 王志航, 夏伟
空军工程大学航空工程学院,西安 710038
Effect and Mechanism of Low Temperature Curing on the Early Performance of Epoxy Resin Based Mortar
LYU Yan, BAI Erlei*, WANG Zhihang, XIA Wei
Aviation Engineering School, Air Force Engineering University, Xi'an 710038, China
下载:  全 文 ( PDF ) ( 8859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环氧树脂基砂浆是一种快速修补材料,为研究低温养护条件对环氧树脂基砂浆工作性能及早期力学性能的影响,构建了全过程低温环境,分别进行了抗压强度、抗折强度、流动度、凝结时间以及内部温度测试,分析了环氧树脂基砂浆的微观结构。结果表明:环氧树脂基砂浆性能受养护温度影响较大,当养护温度为0 ℃时,流动度仅为112 mm,但随着温度升高流动度增长较快;低温养护使得砂浆内部热效应减弱,延缓了凝结时间;早期强度也损失显著,0 ℃时,砂浆养护1 d才形成强度,说明低温环境大大减慢了体系的固化速度。微观分析表明低温养护导致砂浆内部结构疏松,裂缝及孔隙增多,说明固化反应不完全,从而降低了砂浆的性能。当养护温度为20 ℃时,砂浆内部结构较为致密,宏观结构也表现出较高强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕炎
白二雷
王志航
夏伟
关键词:  环氧树脂基砂浆  快速修补材料  低温养护  早期力学性能  工作性能  微观结构    
Abstract: Epoxy resin based mortar is a new high-performance engineering material. In order to study the effect of low temperature curing conditions on the working performance and early mechanical properties of epoxy resin based mortar, a low-temperature environment was constructed using a low temperature test system. The compressive strength, flexural strength, flowability, setting time, and internal temperature were tested, and the microstructure and pore structure of epoxy resin based mortar were analyzed. The results show that the performance of epoxy resin based mortar is greatly affected by temperature. When the temperature is 0 ℃, the fluidity is only 112 mm, but it increases rapidly with increasing temperature. Low temperature curing weakens the internal thermal effect of mortar and delays the setting time. The early strength loss is also significant. At 0 ℃, the mortar is cured for 1 d to form strength, indicating that the low-temperature environment greatly delays the curing rate of the system. Microscopic analysis shows that low-temperature curing leads to loose internal structure, increases cracks and pores in the mortar, indicating incomplete curing reaction and thus reducing the performance of the mortar. When the curing temperature is 20 ℃, the internal structure is relatively dense and the macro structure also exhibits high strength.
Key words:  epoxy resin based mortar    rapid repair material    low temperature curing    early mechanical property    working performance    microstructure
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TV432+.8  
基金资助: 国家自然科学基金(52278287)
通讯作者:  *白二雷,空军工程大学航空工程学院副教授、博士研究生导师。主持完成国家自然科学基金项目2项,陕西省自然科学基金项目1项,陕西省科技攻关项目1项。获得国家专利8项,发表学术论文50余篇,其中SCI收录12篇,EI收录15篇,出版专著3部。 bwxkgy@163.com   
作者简介:  吕炎,2021年6月于空军工程大学获得工学学士学位。现为空军工程大学航空工程学院硕士研究生,主要从事工程抢修抢建材料研究。
引用本文:    
吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
LYU Yan, BAI Erlei, WANG Zhihang, XIA Wei. Effect and Mechanism of Low Temperature Curing on the Early Performance of Epoxy Resin Based Mortar. Materials Reports, 2024, 38(5): 23080222-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080222  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23080222
1 Zhang X H, Zhu H, Chen X L. New Building Materials, 2016, 43(5), 23 (in Chinese).
张晓华, 朱华, 陈晓龙. 新型建筑材料, 2016, 43(5), 23.
2 Peng J, Dan R, Huang S, et al. Thermosetting Resin, 2021, 36(3), 42 (in Chinese).
彭杰, 单韧, 黄松, 等. 热固性树脂, 2021, 36(3), 42.
3 Tan M. Thermosetting Resin, 2018, 33(1), 41 (in Chinese).
谭敏. 热固性树脂, 2018, 33(1), 41.
4 Haddad H, Akohaisi M. Materials & Design, 2013, 49, 850.
5 Chen W, Ren K L, Zhang Y L, et al. Journal of Water Resources and Water Engineering, 2023, 34(3), 129 (in Chinese).
陈卫, 任凯麟, 张御翎, 等. 水资源与水工程学报, 2023, 34(3), 129.
6 Rahman M M, Akhtarul I M. Polymer Bulletin, 2022, 79(3), 1949.
7 Li G J, Luo F. Non-metallic Mineral, 2019, 42(5), 35 (in Chinese).
李冠杰, 雒锋. 非金属矿, 2019, 42(5), 35.
8 Zhang J T, Min Q L, Li M C, et al. Journal of Water Resources and Water Engineering, 2022, 33(1), 152 (in Chinese).
张俊涛, 闵巧玲, 李明超, 等. 水资源与水工程学报, 2022, 33(1), 152.
9 Lakhiar M T, Bai Y, Wong L S, et al. Construction and Building Materials, 2022, 315, 125677.
10 Chen J B, Deng A Z, Chen K, et al. New Chemical Materials, 2016, 44 (4), 249 (in Chinese).
陈静波, 邓安仲, 陈科, 等. 化工新型材料, 2016, 44(4), 249.
11 Kong X M, Liu Y L, Yan P Y. Journal of the Chinese Ceramic Society, 2010, 38(4), 553 (in Chinese).
孔祥明, 刘永亮, 阎培渝. 硅酸盐学报, 2010, 38(4), 553.
12 Reis J M L, Carvalho A R, da Costa M H S. Construction and Building Materials, 2014, 55, 1.
13 Jin N J, Yeon J, Seung I. Construction and Building Materials, 2017, 156(15), 933.
14 Huang H, Hao J, Zhao B. Energy Procedia, 2017, 105, 1205.
15 Teng X H, Lin H, Zhang J Y, et al. Low Temperature Building Technology, 2022, 44(8), 42 (in Chinese).
滕新华, 林辉, 张菁燕, 等. 低温建筑技术, 2022, 44(8), 42.
16 Xiong X B. Experimental study on the evolution law of epoxy mortar concrete interface performance in cold regions. Master's Thesis, Xi'an University of Technology, China, 2022 (in Chinese).
熊小斌. 寒冷地区环氧砂浆-混凝土界面性能演化规律试验研究. 硕士学位论文, 西安理工大学, 2022.
17 DL/T 5193-2004 Technical code of epoxy resin mortar, China Electric Power Press, China, 2004 (in Chinese).
DL/T 5193-2004 环氧树脂砂浆技术规程, 中国电力出版社, 2004.
18 GB/T 17671-2021 Test method for strength of hydraulic cement mortar, Standards Press of China, China, 2021(in Chinese).
GB/T 17671-2021 水泥胶砂强度检验方法, 中国标准出版社, 2021.
19 GB/T 2419-2005 Test method for fluidity of cement mortar, Standards Press of China, China, 2005(in Chinese).
GB/T 2419-2005 水泥胶砂流动度测定方法, 中国标准出版社, 2005.
20 Roller M B. Polymer Engineering & Science, 1975, 15(6), 406.
21 Lyu Y, Bai E L, Wang Z H, et al. Journal of Air Force Engineering University, 2022, 23(6), 99 (in Chinese).
吕炎, 白二雷, 王志航, 等. 空军工程大学学报, 2022, 23(6), 99.
22 Hancox N L. Materials & Design, 1998, 19(3), 85.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[6] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[7] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[8] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[9] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[10] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[11] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[12] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[13] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[14] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[15] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed