Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23110073-7    https://doi.org/10.11896/cldb.23110073
  无机非金属及其复合材料 |
人工漂珠制备吸声材料的降噪性能研究
周辉1, 莫继良1,*, 张蒙祺1, 王好平1, 陈伟1, 龚柯梦2
1 西南交通大学机械工程学院,成都 610031
2 成都信息工程大学自动化学院,成都 610225
Study on the Noise Reduction Performance of Sound-absorbing Materials Prepared by Artificial Floating Beads
ZHOU Hui1, MO Jiliang1,*, ZHANG Mengqi1, WANG Haoping1, CHEN Wei1, GONG Kemeng2
1 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 School of Automation, Chengdu University of Information Technology, Chengdu 610225, China
下载:  全 文 ( PDF ) ( 3292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 中低频噪音污染已是影响人类身心健康的重要环境污染之一,开发中低频吸声系数高、制造成本低的吸声材料一直以来都是降噪行业的重要目标。人工漂珠(简称漂珠)既可以通过收集矿石开采后废弃的小颗粒矿砂获得,又可以通过粉碎矿石形成所需粒径的矿砂,然后再经矿砂预热、煅烧等工艺获得。其表面和内部具有大量孔隙,因而具备潜在的吸声性能,但其用作吸声材料的潜力尚未得到充分的探索。本工作旨在探讨由漂珠制成的吸声材料的吸声性能。采用不同粒径搭配不同用量的漂珠和粘合剂制备四种吸声材料样品,对其微观形貌进行表征,统计孔隙面积分布,并用阻抗管测量四种材料的吸声系数。结果表明,在本工作所涉及的参数范围内,四种吸声材料在400~1 000 Hz频率上均可有效吸收噪声(吸声系数大于0.2)。随着粒径小、孔隙小的漂珠用量的增加,漂珠制备的材料的吸声能力逐步增强,主要是由于孔隙的减小延长了声波在材料内部的传播路径。此外,不同粒径搭配不同漂珠用量还会影响材料吸声系数峰值所对应的频率;换言之,可以通过漂珠配比的针对性设计,加强吸声材料对某一给定频率噪声的敏感度。本研究可为开发以漂珠为主要成分的低成本吸声材料提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周辉
莫继良
张蒙祺
王好平
陈伟
龚柯梦
关键词:  漂珠  微观结构  吸声材料  吸声系数    
Abstract: Low-frequency noise pollution has become one of the important environmental pollutants that affect human physical and mental health. The development of low-frequency sound-absorbing materials with high absorption coefficients and low manufacturing costs has always been a significant goal in the noise reduction industry. Artificial floating beads (referred to as floating beads) can be obtained by collecting small particles of abandoned ore after mining or by crushing ore to obtain the required particle size. Then they are prepared using processes such as preheating and calcination. The floating beads have abundant pores on the surface and inside, and therefore have potential sound absorption capabilities. However, their potential as sound-absorbing materials has not been fully explored. This study aims to investigate the sound absorption performance of sound-absorbing materials made from floating beads. Four types of sound-absorbing material samples were prepared by combining floating beads and binders with different particle sizes and dosages. The microstructure of the samples was characterized, and the distribution of pore area was statistically analyzed. The sound absorption coefficients of the four materials were measured using impedance tubes. The results showed that within the parameter range of this study, all four types of sound-absorbing materials effectively absorbed noise in the frequency range of 400—1 000 Hz (with sound absorption coefficients greater than 0. 2). With an increasing in the dosage of floating beads with smaller particle sizes and smaller pores, the sound absorption capacity of the materials prepared from floating beads gradually increased. This was mainly due to the decreasing in pore size, which prolonged the propagation path of sound waves within the material. In addition, the combination of different particle sizes and dosages of floating beads also affected the peak frequency corresponding to the sound absorption coefficient of the materials. In other words, by designing the floating bead ratio, the sensitivity of the sound-absorbing material to a given frequency of noise can be enhanced. This study provides new insights for the development of low-cost sound-absorbing materials using floating beads as the main component.
Key words:  artificial float    microstructure    sound-absorbing materials    sound absorption coefficient
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TB321  
基金资助: 国家自然科学基金(U22A20181;52005419);四川省自然科学基金(2023NSFSC0859)
通讯作者:  *莫继良,西南交通大学机械工程学院研究员、博士研究生导师。2003年西南交通大学机械工程学院机械类专业本科毕业,2008年西南交通大学机械设计及理论工学博士毕业后到西南交通大学工作至今。目前主要从事摩擦学/动力学行为分析、振动与噪声控制、故障诊断与智能化等方面的研究工作。发表论文100余篇,包括(第一/通信作者SCI论文70余篇,4篇入选国际期刊“Top 25 Hottest Articles”,1篇入选ESI高被引论文),入选爱思唯尔(Elsevier)发布2022年“中国高被引学者”(机械工程),授权30余项中国发明专利。jlmo@swjtu.cn   
作者简介:  周辉,2010年6月于电子科技大学获得硕士学位,高级工程师职称。现为西南交通大学机械工程学院博士研究生,主要研究方向为振动与噪声控制以及降噪材料的研发。
引用本文:    
周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
ZHOU Hui, MO Jiliang, ZHANG Mengqi, WANG Haoping, CHEN Wei, GONG Kemeng. Study on the Noise Reduction Performance of Sound-absorbing Materials Prepared by Artificial Floating Beads. Materials Reports, 2024, 38(22): 23110073-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110073  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23110073
1 González A E. Journal of Environmental Protection, 2014, 5, 340.
2 Boogaard H, Patton A P, Atkinson R W, et al. Environment International, 2022, 164, 107262.
3 Xiao X, He Z C, Li E, et al. Composite Structures, 2020, 243, 112230.
4 Xiao X, He Z C, Li E, et al. Mechanical Systems and Signal Processing, 2019, 115, 418.
5 Jiang G, Jing X, Guo Y. Mechanical Systems and Signal Processing, 2020, 138, 106552.
6 Li M, Du S, Li F, et al. Mechanical Systems and Signal Processing, 2020, 142, 106799.
7 Bhingare N H, Prakash S, Jatti V S. Polymer Testing, 2019, 80, 106142.
8 Liu Y, Huo Y J, Du Y K, et al. Journal of Functional Materials, 2022, 53(2), 2073 (in Chinese).
刘杨, 霍又嘉, 杜元开, 等. 功能材料, 2022, 53(2), 2073.
9 Otaru A J. Metals and Materials International, 2020, 26, 915.
10 Cao L, Fu Q, Si Y, et al. Composites Communications, 2018, 10, 25.
11 Han F, Seiffert G, Zhao Y, et al. Journal of Physics D:Applied Physics, 2003, 36, 294.
12 Lu M, Hopkins C, Zhao Y, et al. MRS Online Proceedings Library (OPL), 2009, 1188, 184.
13 Wang J Z, Tong H P, Ao Q B, et al. Materials China, 2017, 36(Z1), 550 (in Chinese).
王建忠, 汤慧萍, 敖庆波, 等. 中国材料进展, 2017, 36(Z1), 550.
14 Zhang Y, Guo W L, Liang L S, et al. Materials Reports, 2023, 37(19), 133 (in Chinese).
张宇, 郭文龙, 梁李斯, 等. 材料导报, 2023, 37(19), 133.
15 Peng S, Guo Z C. Transactions of Nonferrous Metals Society of China, 2015, 25, 2230.
16 Arenas C, Luna-Galiano Y, Leiva C, et al. Construction and Building Materials, 2017, 134, 433.
17 Buratti C, Belloni E, Lascaro E, et al. Construction and Building Materials, 2018, 171, 338.
18 Peng L, Liu M, Wang D, et al. Wood Research, 2018, 63, 559.
19 Kang C W, Jang E S, Jang S S, et al. Journal of the Korean Wood Science and Technology, 2019, 47, 425.
20 Malawade U A, Jadhav M G. American Journal of Mechanical and Materials Engineering, 2019, 3, 53.
21 Boucedra A, Bederina M, Ghernouti Y. Construction and Building Materials, 2020, 256, 119447.
22 Marques B, Tadeu A, António J, et al. Construction and Building Materials, 2020, 239, 117851.
23 Borrell J M G, Sanchis E J, Alcaraz J S, et al. Applied Acoustics, 2020, 161, 107174.
24 Lu T J, Chen F, He D. The Journal of the Acoustical Society of America, 2000, 108, 1697.
25 Chen W J, Chang R X, Wang X P. Aeronautical Manufacturing Technology, 2022, 65(14), 58(in Chinese).
陈文炯, 常润鑫, 王小鹏. 航空制造技术, 2022, 65(14), 58.
26 Sun F S. Equivalent model study and performance test of sound absorption calculation for porous materials. Master's Thesis, Shandong University of Technology, China, 2019 (in Chinese).
孙丰山. 多孔材料吸声计算的等效模型研究与性能测试. 硕士学位论文, 山东理工大学, 2019.
27 Zhao Y. Simulation analysis and optimization of sound absorption properties of porous materials. Master's Thesis, Chongqing University, China, 2019 (in Chinese).
赵毅. 多孔材料吸声性能仿真分析与优化. 硕士学位论文, 重庆大学, 2018.
28 Bratu M, Dumitrescu O, Vasile O, et al. Romanian Journal of Materials, 2014, 44, 160.
29 ISO 10534-2:1998. Acoustics-determination sound absorption coefficient and impedance in impedance tubes, International Standards Organization, Geneva, Switzerland, 2001.
30 Amaral-Labat G, Gourdon E, Fierro V, et al. Carbon, 2013, 58, 76.
31 Arenas J P, Crocker M J. Sound and Vibration, 2010, 44, 7.
32 Jin W, Liu J, Wang Z, et al. Materials, 2015, 8, 7511.
33 Kalauni K, Pawar S J. Journal of Porous Materials, 2019, 26, 1795.
34 Gokulkumar S, Thyla P R, Prabhu L, et al. Journal of Natural Fibers, 2020, 17, 1719.
35 Rusli M, Irsyad M, Dahlan H, et al. IOP Conference Series:Materials Science and Engineering, 2019, 602, 012067.
36 Lyu L H, Li Z, Zhang D D. Journal of Textile Research, 2022, 43(1), 30 (in Chinese).
吕丽华, 李臻, 张多多. 纺织学报, 2022, 43(1), 30.
37 Yahya M N, Chin D D V S. IOP Conference Series:Materials Science and Engineering, 2017, 226, 012014.
38 Kalauni K, Pawar S J. Journal of Porous Materials, 2019, 26, 1795.
39 Cucharero J, Ceccherini S, Maloney T, et al. Cellulose, 2021, 28, 4267.
40 Arenas J P, Crocker M J. Sound & Vibration, 2020, 44, 12.
41 Peng L M, Song B Q, Wang J F, et al. Advances in Materials Science and Engineering, 2015, 2015, 274913.
42 Kalauni K, Pawar S J. Journal of Porous Materials, 2019, 26, 1795.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[8] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[9] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[10] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[11] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[12] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[13] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[14] 曾田, 陈啸洋, 王南, 张婷婷, 关岩, 毕万利, 常钧. 镁质胶凝材料综述:研究进展与低碳路径探讨[J]. 材料导报, 2024, 38(17): 24010170-15.
[15] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed